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Fourier for non-periodic functions?
Question. How can we analyse functions f: R — C that are not
periodic?

Idea.
» For some L “cut out” the interval [—L, L]
» assume that it is periodic and use Fourier series
> letl — o0




Definition: (Continuous) Fourier Transform

[e.e]

Let f € L;(R) (absolute integrable, i. e. / |f(x)]dx < o).

—00

Then the (continuous) Fourier Transform is defined by

flw) = F(f)(w) = \/12? /_Oo f(x)e > dx, weR.

If g(w) is absolutely integrable, then the inverse Fourier transform is
defined by

g(x) = f_l(g) = \/127( /00 g(w)eiwx dw, x € R.




Be careful with the definition of the Fourier Transform
Warning. It is not uniquely given, where to place the factor 5~
The following definitions are usually used

o0
> \/127/ f(x)e > dx (ours, both F and F~1 with same factor)
—0o0
f(x)e —wx gx (then the inverse has - 5 as a factor)

H\

—00
/ f(x)e” lwx dx (no factor for the inverse)

e 2mwx oy (frequency in Hz, no factor for the inverse)

|\ y
8

o0

Sometimes even the minus in the exponent might be with the inverse
transform.

Be careful. When you see a Fourier transform and first check wich
definition was used.




Cosine & Sine Transform

Using Eulers formula we can do the same derivation as before using cos
and sin.

If f is an even function, we define the Fourier Cosine Transform (and its
inverse) as

fw) = \f | fecoson)d gc(x)=\/§ | e)cosn) e

If f is an odd function, we define the Fourier Sine Transform (and its
inverse) as

_ \/E/OOO F(x)sin(wx)dx  El(x) = \[/ ) sin(wx) duw

Advantage. If f (and g) are real-valued, so are their transforms.
Warning. Again - be careful with the scaling.




Inversion of the Fourier Transform

Theorem. Let 7 and f be absolutely integrable.

Then e
R o N A 2 iwx
) = F 1) = o [ Fwpede

—00

Proof. Ommitted.




Time vs Frequency Domain

When we consider f and its Fourier Transform # we have

F o4
OEN®

and we call

> f to bein the time domain
> f to be in the frequency domain




Example |

Example. As a first xample let's look at an indicator function

1 ifxe]la b
0 else.

f(x) = Xa,p) = {




Further examples

Example. Let a > 0 be given and set f(x) = e/, Then
2 a
—alxly =, /2
Fle) \/;32 + w?

Example. Let a > 0 be given and set f(x) = =", Then

Fle) = ——c%
e = ———¢ a
V2a
or in other words: The Fourier transform of a Gaussian is again a
Gaussian.




Linearity & Derivatives and the Fourier transform
Theorem. Let a,b € C and f,g € L}(R). Then
F(af + bg) = aF(f)+ bF(g)

Proof. Left as an exercise, but follows directly from linearity of
integration

Theorem. Assume that both f and f” are in L}(R) and that f(x) — 0 for

x — *+oo.

Then it holds that
F(f") = iwF(f).

Proof.




B Fourier Transform and Convolution

Definition. (Convolution Ill, Fourier version)
Let f,g € LY(R). Then the convolution f * g is defined by

(r+e)) = [ f(ele—y)dx.

—0o0

This is actually well defined and we even have f x g € L1(R).
Theorem. Similar to the 27 periodic case we have f x g = g x f.
Theorem. Let f, g € L}(R). Then

F(f «g) = Var - F(f) - F(g).

So again. A convolution in time turns into a multiplication in frequency
domain.




The Discrete Fourier Transform
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Concerning Fourier Transforms we now have Transforms for

B Overview and Motivation

1. 2m-periodic functions f = Fourier Series c(f), k € Z
2. functions f € L}(R) we obtain the Fourier Transform f(w)

Question. Can we Fourier transform a Signal (f, f1, ..., fy—1)?
(or: what else can we Fourier transform?)
Hi, De. Elzabeth?

Yesh, vh... T acc‘ndcdh\b teok
the FEurEer transfocm of Ty cat ...

;? Mww

U

source:https://xked. com/26/



https://xkcd.com/26/

Idea. Use a composite trapezoidal rule to approximate c,(f). For ease

B Discrete Fourier Transform: Discretizing c(f)
NTNU of notation we use [0,27) and remember that f is 27 periodic.

. . 27§
So our sampling points are x; = %,j =0,...,N—1.
Then we obtain for any k € Z.

N—

Z; f<2l7\TIJ) 2ijk /N

1 2 ikx 1
ck(f):§ | f(x)e™ dx ~ N

Instead of having the function f in mind, we could also (just) think of a
given signal (or vector) of values

(fo, A1, fn—1)

with .
. f(2ﬂ) j=0,...,N—1.




The Discrete Fourier Transform

For a given signal f = (fy, f,...,fy_1)T € CN
NTNU the Discrete Fourier Transform (DFT) is defined as
N—1 B
L= fe 2KIN e —0 N -1.
j=0
We introduce wy = e~ 2/N and f = (,..., fy_1)* € CV.

Then we write the DFT also in matrix-vector form
f=Fnf

where the matrix Fy € CV*N is given by

N—1 y N—1
_ | —2nijk/N _ i
J,k=0 J:k=0

is the Nth Fourier matrix.




DFT - Historical Remarks

The discrete Fourier transform is even older than the theory developed
by Fourier (1807)

» mentioned by Lagrange 1758 for sine functions (DST)

» Lagrange, Clairaut (1754), Euler used them to determine orbits of
celestial bodies

» was also used by Gauss to determine the orbit of Ceres (N = 12,
~ 1801)




B Properties of the discrete Fourier coefficients £,

Symmetry for real-valued signals if the f; (or the function f) is
real-valued then

NTNU

A

N-periodicity The discrete Fourier coefficients are N-periodic, i. e.
fi = fiyn

(Exercise, note what happens to w}).

Aliasing formula. Let f € C([—7, 7)) and let >, |ck(f)| < co then the
Aliasing formula holds:

fe=> cpen(f), keL.
tez




B Results of Aliasing

If N is even and f is a trigonometric polynomial of degree %, i.e. of the

form
N/2-1

fx)= Y al(f)e?™™

k=—N/2+1

(or in other words only theterms ¢ =0for k = -N/2+4+1,...,N/2—-1are
present)

Then f = ck(f), k = =N/2+1,...,N/2 — 1.

Remark. This also means: Given f,..., fy_; sampling values of this
function f, we can unigely reconstruct f.

This is also called periodic interpolation or trigonometric interpolation.
If you just have the sampling values, this enables you to find the unique
trigonometric polynomial of degree N /2 that interpolates your data.




Inverse Discrete Fourier Transform

Theorem. For a given signal f = (%, A,..., fiy_1)T e CV
the Inverse Discrete Fourier Transform (IDFT) is given by

= B
fi= =Y fPURN 0 N-1
N
k=0
Remember wy = e 2"/N and f = (fy,..., fy_1)T € CN.

Then we have since e27k/N = wi that

f Fnf

1
N

Proof. /dea. We have to show (plugging in f = Fyf) that f = 2 FyFnf
or in other words that £ FyFy is the identity matrix.




The Fast Fourier Transform - Motivation
B Disadvantage of the DFT: Computing it takes O(N?) operations.

Example.
In processing audio: Filter (e.g. remove noise) is a convolution, but
44.1kHz Sampling in Audio = N = 44100 for 1 sec. of audio data.

Audio length  Operations (sec.) on modern CPU (i9)

1 sec. 1.94 - 10° 0.388-10~*
1 min. 7-1012 0.14
1hr 2.52 .10 504 (8 Min.)

That is not feasible, e. g. when we need this “in real-time"” (below %th of
a second).

Can we maybe use the structure of F to make it faster?




The Fast Fourier Transform - Approach

Cooley & Tuckey (1965) presented an algorithm for the DFT (and hence
IDFT) that we illustrate for the case for N = 2"

The Radix-2-FFT.
We will just present the idea.

1. For each k computing £ can be split the sum into even and odd
indices j

2. One of them is directly a DFT(%), the other one has a factor wy
upfront.

= reduces O(N?) to “2 times O(NT2) plus O(%) multiplications”




If we iterate this idea, we can do the DFT(N) (remember N = 2")

B FFT - Number of operations

2 DFT(4) and N/2 multiplications
4 DFT(§) and 25 multipliations

2k DFT(2) and k¥ multipliations

vVvyVvyvVvyyvyy

N = 2" DFT(1) and n¥ multiplications

Where the number of additions to combine the DFT(1)s again is nN.
= combining these yields that the Fast Fourier transform requires
O(nN) = O(log(N)N) operations.

Example.
The approx. 8 min. in the audio example reduce to 5 - 10~* sec.
speedup of about 8.9 - 10°




FFT - Historical Remarks

You can use arbitrary factorisations N = N; N, but then the formula is
more complicated

» 1965 Cooley & Tukey introduced the FFT, which made it fast and
usable on computers

» 1905 the main idea of the FFT was described already by C. Runge

» 1801 Gauss (to determine the orbit of Ceres) split his DFT N = 12
intoN=4and N =3

Today there is a large variety of algorithms/splitting techniques
collected within the FFTW.




B Discrete Sine and Cosine Transform (DST & DCT)

NTNU

For the discrete case you can use the same ideas we already saw for
even (cosine) and odd (sine) transform approaches.

Advantage. A real-valued signal stays real-valued

Variants. For the discrete signal there are 4 ways of continuing a signal
even/odd.
= There exist

» 4 discrete sine transforms (DST-| to DST-IV)
» 4 discrete cosine transforms (DCT-l to DCT-VI)

Fast implementations based on the FFT idea are available here as well.
Most used: DCT-II.
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