
N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy TMA4125 Matematikk 4N

Fourier Transform

Ronny Bergmann

Department of Mathematical Sciences, NTNU.

March 7, 2022

2

Fourier for non-periodic functions?
Question. How can we analyse functions f : R → C that are not
periodic?

Idea.
▶ For some L “cut out” the interval [−L, L]

▶ assume that it is periodic and use Fourier series
▶ Let L → ∞

3

Definition: (Continuous) Fourier Transform

Let f ∈ L1(R) (absolute integrable, i. e.
∫ ∞

−∞
|f (x)|dx < ∞).

Then the (continuous) Fourier Transform is defined by

f̂ (ω) := F(f)(ω) =
1√
2π

∫ ∞

−∞
f (x)e−iωx dx , ω ∈ R.

If g(ω) is absolutely integrable, then the inverse Fourier transform is
defined by

ǧ(x) := F−1(g) =
1√
2π

∫ ∞

−∞
g(ω)eiωx dω, x ∈ R.

4

Be careful with the definition of the Fourier Transform
Warning. It is not uniquely given, where to place the factor 1

2π
The following definitions are usually used

▶ 1√
2π

∫ ∞

−∞
f (x)e−iωx dx (ours, both F and F−1 with same factor)

▶
∫ ∞

−∞
f (x)e−iωx dx (then the inverse has 1

2π as a factor)

▶ 1
2π

∫ ∞

−∞
f (x)e−iωx dx (no factor for the inverse)

▶
∫ ∞

−∞
f (x)e−2πiωx dx (frequency in Hz, no factor for the inverse)

Sometimes even the minus in the exponent might be with the inverse
transform.

Be careful. When you see a Fourier transform and first check wich
definition was used.

5

Cosine & Sine Transform
Using Eulers formula we can do the same derivation as before using cos
and sin.

If f is an even function, we define the Fourier Cosine Transform (and its
inverse) as

f̂c(ω) =

√
2
π

∫ ∞

0
f (x) cos(ωx)dx ǧc(x) =

√
2
π

∫ ∞

0
g(ω) cos(ωx)dω

If f is an odd function, we define the Fourier Sine Transform (and its
inverse) as

f̂c(ω) =

√
2
π

∫ ∞

0
f (x) sin(ωx)dx ǧc(x) =

√
2
π

∫ ∞

0
g(ω) sin(ωx)dω

Advantage. If f (and g) are real-valued, so are their transforms.
Warning. Again – be careful with the scaling.

6

Inversion of the Fourier Transform

Theorem. Let f and f̂ be absolutely integrable.

Then
f (x) = F−1(f̂) =

1
2π

∫ ∞

−∞
f̂ (ω)eiωx dx

Proof. Ommitted.

7

Time vs Frequency Domain

When we consider f and its Fourier Transform f̂ we have

f (x)
F
⇄
F−1

f̂ (ω)

and we call

▶ f to be in the time domain
▶ f̂ to be in the frequency domain

8

Example I
Example. As a first xample let’s look at an indicator function

f (x) = X[a,b] =

{
1 if x ∈ [a, b]

0 else.

9

Further examples

Example. Let a > 0 be given and set f (x) = e−a|x |. Then

F(e−a|x |) =

√
2
π

a

a2 + ω2

Example. Let a > 0 be given and set f (x) = e−ax2 . Then

F(e−ax2
) =

1√
2a

e−
ω2
2a

or in other words: The Fourier transform of a Gaussian is again a
Gaussian.

10

Linearity & Derivatives and the Fourier transform
Theorem. Let a, b ∈ C and f , g ∈ L1(R). Then

F(af + bg) = aF(f) + bF(g)

Proof. Left as an exercise, but follows directly from linearity of
integration

Theorem. Assume that both f and f ′ are in L1(R) and that f (x) → 0 for
x → ±∞.
Then it holds that

F(f ′) = iωF(f).

Proof.

11

Fourier Transform and Convolution
Definition. (Convolution III, Fourier version)
Let f , g ∈ L1(R). Then the convolution f ∗ g is defined by

(f ∗ g)(x) =
∫ ∞

−∞
f (y)g(x − y)dx .

This is actually well defined and we even have f ∗ g ∈ L1(R).

Theorem. Similar to the 2π periodic case we have f ∗ g = g ∗ f .

Theorem. Let f , g ∈ L1(R). Then

F(f ∗ g) =
√

2π · F(f) · F(g).

So again. A convolution in time turns into a multiplication in frequency
domain.

N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy

The Discrete Fourier Transform

12

Overview and Motivation
Concerning Fourier Transforms we now have Transforms for

1. 2π-periodic functions f ⇒ Fourier Series ck(f), k ∈ Z
2. functions f ∈ L1(R) we obtain the Fourier Transform f̂ (ω)

Question. Can we Fourier transform a Signal (f0, f1, . . . , fN−1)?
(or: what else can we Fourier transform?)

source:https://xkcd.com/26/

https://xkcd.com/26/

13

Discrete Fourier Transform: Discretizing ck(f)
Idea. Use a composite trapezoidal rule to approximate ck(f). For ease
of notation we use [0, 2π) and remember that f is 2π periodic.

So our sampling points are xj =
2πj
N

, j = 0, . . . ,N − 1.
Then we obtain for any k ∈ Z.

ck(f) =
1
2π

∫ 2π

0
f (x)eikx dx ≈ 1

N

N−1∑
j=0

f
(2πj

N

)
e2πijk/N

Instead of having the function f in mind, we could also (just) think of a
given signal (or vector) of values(

f0, f1, . . . , fN−1
)

with
fj := f

(2πj
N

)
, j = 0, . . . ,N − 1.

14

The Discrete Fourier Transform
For a given signal f = (f0, f1, . . . , fN−1)

T ∈ CN

the Discrete Fourier Transform (DFT) is defined as

f̂k =
N−1∑
j=0

fj e−2πijk/N , k = 0, . . . ,N − 1.

We introduce wN = e−2πi/N and f̂ = (f̂0, . . . , f̂N−1)
T ∈ CN .

Then we write the DFT also in matrix-vector form

f̂ = FN f

where the matrix FN ∈ CN×N is given by

FN =

(
e−2πijk/N

)N−1

j ,k=0
=

(
w jk
N

)N−1

j ,k=0

is the Nth Fourier matrix.

15

DFT – Historical Remarks

The discrete Fourier transform is even older than the theory developed
by Fourier (1807)

▶ mentioned by Lagrange 1758 for sine functions (DST)
▶ Lagrange, Clairaut (1754), Euler used them to determine orbits of

celestial bodies
▶ was also used by Gauss to determine the orbit of Ceres (N = 12,

≈ 1801)

16

Properties of the discrete Fourier coefficients f̂k
Symmetry for real-valued signals if the fj (or the function f) is
real-valued then

f̂k = f̂−k

N-periodicity The discrete Fourier coefficients are N-periodic, i. e.

f̂k = f̂k+N

(Exercise, note what happens to wN
N).

Aliasing formula. Let f ∈ C ([−π, π)) and let
∑

k |ck(f)| < ∞ then the
Aliasing formula holds:

f̂k =
∑
ℓ∈Z

ck+ℓN(f), k ∈ Z.

17

Results of Aliasing
If N is even and f is a trigonometric polynomial of degree N

2 , i. e. of the
form

f (x) =

N/2−1∑
k=−N/2+1

ck(f)e2πikx

(or in other words only the terms ℓ = 0 for k = −N/2+ 1, . . . ,N/2− 1 are
present)

Then f̂k = ck(f), k = −N/2 + 1, ...,N/2 − 1.

Remark. This also means: Given f0, . . . , fN−1 sampling values of this
function f , we can uniqely reconstruct f .

This is also called periodic interpolation or trigonometric interpolation.
If you just have the sampling values, this enables you to find the unique
trigonometric polynomial of degree N/2 that interpolates your data.

18

Inverse Discrete Fourier Transform

Theorem. For a given signal f̂ = (f̂0, f̂1, . . . , f̂N−1)
T ∈ CN

the Inverse Discrete Fourier Transform (IDFT) is given by

fj =
1
N

N−1∑
k=0

f̂k e2πijk/N , j = 0, . . . ,N − 1.

Remember wN = e−2πi/N and f = (f0, . . . , fN−1)
T ∈ CN .

Then we have since e2πijk/N = w jk
N that

f =
1
N
FN f̂

Proof. Idea. We have to show (plugging in f̂ = FN f) that f = 1
NFNFN f

or in other words that 1
NFNFN is the identity matrix.

19

The Fast Fourier Transform – Motivation
Disadvantage of the DFT: Computing it takes O(N2) operations.

Example.
In processing audio: Filter (e. g. remove noise) is a convolution , but
44.1kHz Sampling in Audio⇒ N = 44100 for 1 sec. of audio data.

Audio length Operations (sec.) on modern CPU (i9)
1 sec. 1.94 · 109 0.388 · 10−4

1 min. 7 · 1012 0.14
1 hr 2.52 · 1016 504 (8 Min.)

That is not feasible, e. g. when we need this “in real-time” (below 1
50 th of

a second).

Can we maybe use the structure of F to make it faster?

20

The Fast Fourier Transform – Approach
Cooley & Tuckey (1965) presented an algorithm for the DFT (and hence
IDFT) that we illustrate for the case for N = 2n

The Radix-2-FFT.
We will just present the idea.
1. For each k computing f̂k can be split the sum into even and odd

indices j
2. One of them is directly a DFT(N2), the other one has a factor wN

upfront.
⇒ reduces O(N2) to “2 times O(N

2

4) plus O(N2)multiplications”

21

FFT – Number of operations
If we iterate this idea, we can do the DFT(N) (remember N = 2n)

▶ 2 DFT(N2) and N/2 multiplications
▶ 4 DFT(N4) and 2N

2 multipliations
▶ ...
▶ 2k DFT(N2k) and k N

2 multipliations
▶ ...
▶ N = 2n DFT(1) and nN

2 multiplications

Where the number of additions to combine the DFT(1)s again is nN .
⇒ combining these yields that the Fast Fourier transform requires
O(nN) = O(log(N)N) operations.

Example.
The approx. 8 min. in the audio example reduce to 5 · 10−4 sec.

speedup of about 8.9 · 106

22

FFT – Historical Remarks

You can use arbitrary factorisations N = N1N2 but then the formula is
more complicated

▶ 1965 Cooley & Tukey introduced the FFT, which made it fast and
usable on computers

▶ 1905 the main idea of the FFT was described already by C. Runge
▶ 1801 Gauss (to determine the orbit of Ceres) split his DFT N = 12

into N = 4 and N = 3

Today there is a large variety of algorithms/splitting techniques
collected within the FFTW.

23

Discrete Sine and Cosine Transform (DST & DCT)

For the discrete case you can use the same ideas we already saw for
even (cosine) and odd (sine) transform approaches.

Advantage. A real-valued signal stays real-valued

Variants. For the discrete signal there are 4 ways of continuing a signal
even/odd.
⇒ There exist
▶ 4 discrete sine transforms (DST-I to DST-IV)
▶ 4 discrete cosine transforms (DCT-I to DCT-VI)

Fast implementations based on the FFT idea are available here as well.
Most used: DCT-II.

24

Application: Image Processing and Compression: Barbara

172 kB

24

Application: Image Processing and Compression: Barbara

29.9 kB (17.3%)

24

Application: Image Processing and Compression: Barbara

18.9 kB (11%)

24

Application: Image Processing and Compression: Barbara

10 kB (5.8%)

24

Application: Image Processing and Compression: Barbara

5.59 kB (3.25%)

24

Application: Image Processing and Compression: Barbara

3 kB (1.74%)

	The Discrete Fourier Transform

