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Recap: Partial Differential Equations

We already discussed ODEs: Equations that include derivatives of
(univariate) functions.

Definition. A partial differential equation (PDE) is an equation that
involves one or more partial derivatives of an (multivariate, unknown)
function u.

We often use u(t, x), u(t,x,y) or u(t, x,y, z) for a function that depends
on time (t) and space (1D, 2D, or 3D, respectively).

» the PDE is linear if it is of first degree in v and its derivatives.
» other wise it is called nonlinear.

> Itis called homogenous if all terms include v or one of its partial
derivatives

» otherwise it is called nonhomogeneous




Solutions of partial Differential Equations
A solution v of a PDE in some region Q C D in the space of its variables
t, x (y,z) is a function whose partial derivatives (appearing in the PDE)
exist in D and such that v fulfills the PDE on Q.

Similar to ODEs, the set of solutions might be huge, so for a unique
solution we additionally require for example

» that v is given on the boundary of the region Q (boundary
condtions)

» that v has some conditions for the start time t = 0 (initial
conditions)

Theorem. (Superposition principle) If u; and u; are solutions
of a homogeneous linear PDE on some €, then

u = auy + bup, for some constants a, b

is also a solution of that PDE in the region Q.



The Heat Equation - Derivation

Goal.
Model the distribution of heat in a given area over time.

P /" » an area (our lecture hall) Qg
4 S » Consider an area Q in our lecture hall
° > At each boundary point: normal vector n
X/Q > Let's look at one point x € Q.
Qo

We model/describe the
» density of internal energy e(x, t) (in [J/m?3]) at a point x at time ¢
» heat flux through a surface 0Q is a vector field F(x, t) ([J/(m?s))])
» power density p(x, t) (in [J/(m3s)],
imagine e.g. a candle




Heat Equation - Step 1: Conservation of Energy
For any Q C Qo the Conservation of energy dictates

Ocl"t/Qe(x,t)dv_/Qp(x,t)dv_/mF(x,t).n(x)ds

Remember. Using Gaul3 (divergence) theorem we can rewrite
/ F(x,t)- n(x) dS = / V. F(x,t)dV
o0 Q
Plugging this into our conservation of energy we obtain
d 0
dt/Qe(x, t)dV = /Q Sre(x)dV = /Q(p(x, t)— V- F(x, t)) dv
Since this has to hold for any Q c Qq we obtain

;e(x, t)+ V- F(x,t) = p(x,t) forall x € Qpand t > 0.




Heat Equation - Step 2: Constitutive Laws

Problem. We can not derive the internal energy and we are also only
interested in the (absolute) temperature T = T(x, t)(e.g. in [K]).

But we can use two empirical observations.

The first constitutive law relates e(x, t) to T:

e=e +o(T— Ty =e + 00, where

> ¢ is the base energy density related to Ty (e. g. 0°K)
> o = o(x) ([J/(m3K)]) the specific heat capacity (at x)
> ¢ =T — Ty relative temperature (we are actually interested in).

The second constitutive law (Fourier's law) relates T (or 9¥) to F

F = —\VY,

where A\ = A\(x) ([J/(mKs)]) is the heat conductivity.



The Heat Equation (finally!)

Plugging both constitutive laws (e = ey + 0 and F = —AV?¥) into the
energy conservation yields the

heat equation.
o;?tz?—v-(AVﬂ):p forallx € Qpand ¢t >0

If we assume that A does not depend on x (e.g. a homogeneous
material) we obtain

aaatz?—AAz?:p forallx e Qpand t >0

Or if we divide by o and introduce c2 = 2 > 0

94 _ 9 289 _
aﬁ—cAﬂ—I—p & 8t19—cA19—p




Boundary and Initial conditions

To finally dertemine the temperature 9 we must also know
» the initial temperature Jy(x) = ¥(x,0) for all x € Qg

» whether or what kind of energy exchange occurs at the boundary
0Qo

Most common boundary conditions are (for the heat equation)
F-n=k(x,t)(0—19,)

with some ambient temperature ¢,
and the heat transfer coefficient  ([J/(m?sK)])

= Fourier's law:
—AVD - n = =\ = k(9 — U,)




Boundary Conditions

These conditions are called Robin boundary conditions
A0 + k(0 —19,) =0 0on 0dQ
(Homogeneous) Neumann condition
x = 0 is the limit case of perfect isolation and we obtain
A0pd =0 on o0Q

(Inhomogeneous) Dirichlet condition: ¥ = ¢,
is the limit case x — oo is infinitely fast heat exchange




1. Solving the heat equation on a rod

Goal. Compute the temperature u(t,x) of a (1D) rod or wire
(infinitely thin, no heat source)

@ @
0 L
o L, P
EU*C ﬁu:()

u(0,t) = u(L,t) =0 Dirichlet boundary conditions
u(x,0) = f(x) initial conditions (at time 0)




B Ansatz: Separation of variables

Ansatz. (or Idea: What if our) solution can be written as

u(x,t) = F(x)G(t)

We obtain
G'(t) - F'x)

for some constant k € R

c2G(t)  F(x)
(we choose —k just such that the following derivations are nicer)

or in other words two ODEs

F"(x) + kF(x) =

0
G'(t) 4+ c?kG(t) =0

Let's consider F first and distinguish different cases of k.




B Case k =0in F"(x) + kF(x) =0

NTNU

Short summary of handwritten notes. Since F”(x) = 0 we have

F(x)=A+ Bx.

The boundary conditions u(0, t) = u(L, t) = 0 yield F(x) =0, so
u(x,t) =0 forallx,t,

which is not an interesting solution.



B Case k < 0in F"(x)+ kF(x) =0

NTNU

Short summary of handwritten notes. We have to solve a linear
system starting from the linear combination of the fundamental
solutions, but we also obtain A= B =0o0r F(x) =0, so

u(x,t) =0 forallx,t,

which is (again) not an interesting solution.



B Case k > 0in F"(x) + kF(x) =0

NTNU

Short summary of handwritten notes. We first obtain that for for
2
k= (”{) , 0 < n € Nwe can choose F(x) = Bsin(vkx)
Plugging these into G’(t) + c2G(t) = 0 we obtain the general solutions

un(x, t) = F(x)Gp(t) = Bne_(CTT)ztsin(nZTx)



Towards a solution to the heat equation on the rod
Every superposition (linear combination) of the u,(x, t) is also a
solution, so the general form is

2

o
t) = Z B,,e_(chW) tsin(n%x)
n=1

Question. How to determine the B,?
Use the initial conditions u(x,0) = f(x)! We get

f(x) = u(x,0) ZB sm(—x)

Do you recognise this? A Fourier series! To be precise of the odd
extension f, of f(x),x € [0, L]!

L nm
B, = i/o f(x)sin(Tx>.




The solution to the heat equation on the rod

NN Theorem. Let L > 0 be given. The (1D) heat equation
0 5 02
au —C @U =0
u(0,t) = u(L,t) =0 Dirichlet boundary conditions
u(x,0) = f(x) initial conditions (at time 0)
is solved by
=3 e (F) ain(
u(x,t) = Z Bpe \'IL sm( T x)
n=1
with

L nm
B, = i/o f(x)sin(Tx>.




Let's consider

B 2. Solution on an infinite rod

NTNU o 5 02
au —C @U = O
limy_,+o0 u(x,t) =0 Dirichlet boundary conditions
u(x,0) = f(x) initial conditions (at time 0) forx € R

Idea. Since Fourier series worked for the bonded interval [0, L], use
Fourier transform here.

Fourier transform in x on both sides yields
gﬁ(w t) = —c2w?i(w, t)
at Y )

Since for any fixed w this is an ODE in t we get

O(w, t) = Alw)e <2t




Initial conditions and Inverse Fourier Transform

Using
0w, t) = Alw)e €2t

and the Fourier transform the initial conditions f(x) = u(x,0) we obtain

N

f(w) = d(w,0) = A(w).

Thus we can compute u(x, t) with the inverse Fourier transform

u(x, t) = F(d(w, t)) \ﬁ/ _Czwzteiwx dw

Observation. for a certain g(w): multiplication in Fourier domain!

We obtain

~

u(x, t) = F(fg) =

1 2,2
fxF 1 cwet
\/2771 i (e )




Heat Kernel.
B So we are left to compute F~1(e~<**t),

From previously we know F(e>*) = \/%e—‘UzZa we obtain with a = ;5
that
V2 .2

e acZt
cVat

g(x) —_ ]:-—l(e—czwzt) —
and hence

V22 o0 1 ew?
7t = f 2t | = f _— 2t d
) = o (e ) = [ A0 e o
Definition. We define the Heat kernel by

1 2
G- (x)=G(x,7) = \/He_ﬂ

then we can write in short u(x, t) = (f x Ge2,)(x).



Observations on the heat kernel .
For the heat kernel G, = G(x,7) = ﬁe_% we have

> / G(x,7)dx=1forall7>0

» For 7 — 0 we get that G(x,7) — d§(x) 0.
» The same of course for 7 = c?t, i.e. G,
= For t — 0 we obtain that
u(x, t) = (f * Gea)(x)
converges to
(f % 0)(x) = f(x).
(though here without proof)

1 GT - Gl




B Solution for the infinite rod.

NTNU

Theorem. The heat equation on the x-axis

0 5 02

au — C ﬁu =0

limy— 400 u(x,t) =0 Dirichlet boundary conditions
u(x,0) = f(x) initial conditions (at time 0) forx € R

can be solved by

1 x=v)?
e a2 dv

u(x, t) = (f * G2 )(x) = /_OO F(v) VA4t

and we have that lim u(x, t) = f(x)
t—0



3. Laplace equation

Goal. Find an equilibrium state.
1. temperature will remain steady/not change over time
0
= au(x, t) =0
and no need for initial conditions (in time)

2. Thus the temperature field u at equilibrium state satisfies the
Laplace equation

—c?Au=0
If the right hand side is not 0 we obtain the Poisson problem.

For the case of a 2D problem (and ¢ = 1) we obtain

0? 0?
SoU+ s5u=0
dy iy
(+ boundary conditions)




B 4.1 The Laplace equation on a rectangular domain

We consider the Laplace equation

0? 0?
AU = ﬁu + 87_)/21-] 0
on a bounded rectangular domain
u=r
b
> Q=10,a] x [0, b]
u=0 u=0 P u(x,0)=u(0,y)=u(a,y)=0
Q > u(x, b) = f(x)
0 -
u=2~0 a

Ansatz. Use (again) separation of variables:
u(x, t) = u(x) = F(x)G(y).




B Solution of the Laplace equation on a rectangle

NTNU

The solution to the Laplace equation on a bounded ractangle reads
> nm nm
,¥) =Y _ Ansinh(—y)si (7 )
u(x,y) 2 nsinh( p y)sin P

where from the boundary condition u(x, b) = f(x) we obtain that

Ap = (sinh mrb)_12/ f(x) sin(ngx) dx.
0

a a



The Laplace equation in the half-plane

We consider the Laplace equation

PP
ax2" (9y2u
on the half-plane
y
> Q={(x,y) eR?:y >0}
> Xll)r:poo u(x,y)=0foranyy >0
o > y||_>moo u(x,y) = 0forany x
x> ub0)=f()

Idea. Use Fourier transform (w.r.t. x), we write F, on our PDE




B Towards the solution of the Laplace equation

NTNU

i(w,y) = Fw)e W
Using the inverse Fourier transform, we obtain

u(x.y) = FH(Fw)e V)

Introducing a function g(x) = F(e~*l¥) we can use the convolution
theorem to see that

1
u(x,y) = \/ﬂf g
and since F_ (e ll) = \/gyzfrxz we obtain

0=+ (Vet) = [0 2 et



The Poisson kernel
Definition. The function

1y
=i
is called the Poisson kernel 55 P, — P,
for the upper half space. — P
2 —P1
Obsergoations. — P
> / P,(x)=1forally >0 15[ )

L
> (52 + 5,7) o) =0
» for y — 0 we obtain Py (x) — §(x).

= we expect }l/il)‘no u(x,y) = }I/il;no(f * Py)(x) = (f % 6)(x) = f(x).



Summary

heat equation Laplace equation
one-dimensional & time u(x, t) 2D equilibrium u(x, y)
d , 0% 0? ?
aU—CﬁU—O —QU—WU—O
» boundary conditions (in x) » boundary conditions (in x)
» initial conditions (in t = 0): f(x) » boundary conditions in y: f(x)
= u(x, t) = (f * Ge2¢)(x) = u(x,y) = (f* Py)(x)
> / Gei(x)dx =1 > / Py(x)dx =1
—c0 —00
> lim Geay(x) = 8(x) > lim Py (x) = 3(x)
> G.:(x) fulfils the heat equation > P,(x) fulfils the Laplace equation

= for both we convolve f a solution with the given PDE




