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Numerical Methods for PDEs – Overview

Goal. Solve a Partial Differential Equation (PDE) numerically.

Approach. We will use finite difference methods.

Roughly speaking these consist of

1. Discretize the domain on which the equation is defined.
2. On each grid point, replace the derivatives with an approximation,

using the values in neighbouring grid points.
3. Replace the exact solutions by their approximations.
4. Solve the resulting system of equations.
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Numerical Methods for PDEs – Roadmap

1. Numerical Differentiation – How to discretize derivatives?
2. Boundary Value Problems – How to tackle boundary conditions?
3. Example. The Heat Equation

∂

∂t
u(x , t) =

∂2

∂x2 u(x , t), 0 ≤ x ≤ 1

u(0, t) = g0(t), u(1, t) = g1(t), Boundary conditions
u(x , 0) = f (x) Initial conditions

which we aim to solve for some time interval [0,T ].
⇒ we have to figure out how to discretize time and space.
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Numerical Differentiation
Question. How to approximate derivatives, for us f ′(x) and f ′′(x), at
some point x using only point evaluations of f ?

Idea. Since the derivative is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)

h

we take a small h on the right as an approximation.
We obtain obtain for h > 0

▶ f ′(x) ≈ ∂+f (x) :=
f (x + h)− f (x)

h
forward difference.

▶ f ′(x) ≈ ∂−f (x) :=
f (x)− f (x − h)

h
backward difference.

▶ f ′(x) ≈ ∂◦f (x) :=
f (x + h)− f (x − h)

2h
central difference.

where the last one is the mean of the first two.
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Numerical Differentiation II

Idea. For the second derivative – Do the approximation twice.

We obtain a common approximation of the second derivative as the
central difference operator for some h > 0

f ′′(x) ≈ ∂+∂−f (x) =
f (x − h)− 2f (x) + f (x + h)

h2

Example. For f (x) = sin(x) and x = π
4 we can check how well these

approximations work.
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Error Analysis
Goal. Investigate the error e(x ; h) w. r. t. h using a Taylor expansion.
Main question. How fast does the error decrease when h → 0?

Errors. We summarize

f ′(x) =


f (x + h)− f (x)

h
− h

2
f ′′(ξ), Forward difference

f (x)− f (x − h)

h
+

h

2
f ′′(ξ), Backward difference

f (x + h)− f (x − h)

2h
− h2

6
f ′′′(ξ). Central difference

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2 − h2

12
f (4)(ξ), Central difference

Or in other words: We obtain the approximation orders
▶ forward and backward differences: 1
▶ first and second order central differences: 2
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The 1D Poisson Problem
We start with a few terms only: Let [a, b] be an interval and f : [a, b] → R
a function.

We consider the two point boundary problem to find u : [a, b] → R such
that

−u′′(x) = f (x) for a ≤ x ≤ b

u(a) = ua

u(b) = ub

where ua, ub ∈ R are given values.

Simplification. Let‘s consider for this example a = 0 and b = 1.

Comparison. This is a second order ODE.
Instead of two inital values we have two boundary values,
since we are in space domain x .
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The 1D Poisson Problem – Discretization

Step 1. Discretize

Numerically we can not handle a function u.
⇒We discretize [a, b] = [0, 1] for a given N ∈ N and h = b−a

N = 1
N :

xi := a+ ih for i = 0, 1, . . . ,N,

i. e. we use equally spaced points with x0 = a = 0 and xN = b = 1.

Step 2. We approximate the derivative u′′ using central differences

∂+∂−u(x)
u(x + h)− 2u(x) + u(x − h)

h2 +O(h2) = u′′(x) = −f (x)

on the internal grid points x1, . . . , xN−1
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The 1D Poisson Problem – Approximation
Step 3. We do two “tricks”

(a) we ignore the error term O(h2)
⇒ we only obtain an approximate solution uh(x)

(b) We represent uh by its discrete values

Ui := uh(xi ), for i = 0, . . . ,N
(we of course hope/have the goal that Ui ≈ u(xi ))

Plugging this into the central differences from Step 2
we obtain at an internal point Ui ≈ u(xi ) that

−∂+∂−Ui = −Ui+1 − 2Ui + Ui+1

h2 = f (xi ), for i = 1, . . . ,N.

Boundary. What about the boundary U0,UN?
Problem. ∂+∂−Ui is not well defined there.
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The 1D Poission Problem – Linear System
Step 4. the N − 1 equations from the last slide
with their N + 1 unknowns Ui lead to the linear system

1
h2


−1 2 −1

−1 2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1





U0
U1
U2
U3
...

UN


=


f (x1)
f (x2)
f (x3)
...

f (xN−1)


Question. (Uniquely) solvable?

Yes.

Any vector U0 = U1 = . . . = UN = c ∈ R is in the kernel of the matrix.
⇒ solution not unique.

Boundary conditions.We can easily include U0 = ua and UN = ub.

To conclude. Knowing f (x), ua, ub and N
⇒ setup matrix A and right hand side F and solve AU = F .
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The 1D Poission Problem – Linear System
Step 4. the N − 1 equations from the last slide
with their N + 1 unknowns Ui lead to the linear system

1
h2



h2

−1 2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
h2





U0
U1
U2
U3
...

UN


=



ua
f (x1)
f (x2)
f (x3)
...

f (xN−1)
ub


Question. (Uniquely) solvable? Yes.

Any vector U0 = U1 = . . . = UN = c ∈ R is in the kernel of the matrix.
⇒ solution not unique.

Boundary conditions.We can easily include U0 = ua and UN = ub.

To conclude. Knowing f (x), ua, ub and N
⇒ setup matrix A and right hand side F and solve AU = F .



11

The 1D Poisson Problem – Numerical Example

Let‘s consider the right hand side

f (x) = (2π)2 sin(2πx), x ∈ [0, 1]

and ua = u(0) = ub = u(1) = 0 then we know the solution, since

Now we can directly see/derive the solution here (note again our focus
is the numerics)

u(x) = sin(2πx)

since −u′′ = f .
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Two Point Boundary Problems
Let‘s continue slightly more general: the numerical solution for

u′′ + p(x)u′ + q(x)u = r(x), a ≤ x ≤ b, u(a) = ua, u(b) = ub,

with given functions p(x), q(x) and given boundary values ua, ub ∈ R.

Step 1. Discretize [a, b]: Choose some N ∈ N, set h = b−a
N and

xi = a+ ih, i = 0, . . . ,N

Step 2. For each i = 1, . . . ,N − 1:
replace u′(xi ) and u′′(xi ) by their approximations

u(xi+h)−2u(xi )+u(xi−h)
h2 + p(xi )

u(xi+h)−u(xi−h)
2h + q(xi )u(xi ) +O(h2) = r(xi )

where O(h2) represents the common error of approximation.
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Two Point Boundary Problems II

Step 3. We again do the two “tricks”:
(a) ignore the error term
(b) replace the exact (unknown) solution u(x) at the xi by their

numerical (still unknown) approximation Ui ≈ u(xi )

We obtain
Ui+1 − 2Ui + Ui−1

h2 +p(xi )
Ui+1 − Ui−1

2h
+q(xi )Ui = r(xi ), i = 1, . . . ,N−1.

Boundary. At the boundary we have U0 = ua and UN = ub,
which we can (again) include, to obtain
N + 1 equations for N + 1 unknowns.
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Two Point Boundary Problems III – A Linear System
This time we multiply all equations by h2 and obtain

A =



1 0
v1 d1 w1

v2 d2 w2

v3
. . . . . .
. . . . . . wN−2

vN−1 dN−1 wN−1
0 1


with

vi = 1 − h

2
p(xi )

di = −2 + h2q(xi )

wi = 1 +
h

2
p(xi )

and

F =


ua

h2r(x1)
...

h2r(xN−1)
ub


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A Two Point Boundary Problem Example
We consider the equation

u′′+2u′−3u = 9x , u(0) = ua = 1, u(1) = ub = e−3+2e−5 ≈ 0.486351,

where we previously learned how to compute the exact solution

u(x) = e−3x + 2ex − 3x − 2

Choose N , set h = 1/N and we get for i = 1, . . . ,N that
u(xi + h)− 2u(xi ) + u(xi − h)

h2 +2
u(xi + h)− u(xi − h)

2h
−3u(xi )+O(h2) = 9xi .

Discretizing u (to Ui ), multiplying by h2 and including the boundary
conditions, we get

U0 = 1,

(1 − h)Ui−1 + (−2 − 3h2)Ui + (1 + h)Ui+1 = 9xih2, i = 1, . . . ,N − 1,
UN ≈ 0.486351.



16

A Two Point Boundary Problem Example (cont.)
To be even more concrete, for N = 4, we get h = 0.25 and the linear
system of equations becomes

1 0 0 0 0
0.75 −2.1875 1.25 0 0
0 0.75 −2.1875 1.25 0
0 0 0.75 −2.1875 1.25
0 0 0 0 1



U0
U1
U2
U3
U4

 =


1.

0.140625
0.28125
0.421875
0.486351


We can include U0,U4 also directly to obtain−2.1875 1.25 0

0.75 −2.1875 1.25
0 0.75 −2.1875

U1
U2
U3

 =

 0.140625 − 0.75 · 1
0.28125

0.421875 − 1.25 · 0.48635073

 ,

Numerically.U1 ≈ 0.293176, U2 ≈ 0.025557, U3 ≈ 0.093820.
exact. u(0.25) ≈ 0.290417, u(0.5) ≈ 0.020573, u(0.75) ≈ 0.089400
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(More about) Boundary conditions

To get a unique solution of a BVP (or a PDE): more information required,
usually given on the the boundaries

We already learned about the most common boundary conditions

1. Dirichlet condition The solution is known at the boundary.
2. Neumann condition The derivative is known at the boundary.
3. Robin (or mixed) condition A combination of those.

Unti now. Numerical Methods with Dirichlet boundary conditions.

So how can we model Neumann conditions? (Mixed are then similarly)
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Our Model BVP – now with Neumann boundary
We modify our BVP

u′′ + p(x)u′ + q(x)u = r(x), a ≤ x ≤ b, u′(a) = u′a, u(b) = ub,

where ub is as before and u′a ∈ R is a value for the derivative of u at a.

Idea. Employ an approximation!
For example, as the simplest idea: forward difference

u′a = u′(a) =
u(x1)− u(x0)

h
+O(h) resulting in U1 − U0

h
= u′a.

Problem. Only a first order approximation.

That is, with all other approximations being central differences
(higher accuracy!)

⇒We loose accuracy in our system.
A central difference using x0, x1, x2 would
destroy our tridiagonal structure.
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The Idea: Introduce a False Boundary
Idea. Assume we can extend u beyond the boundary x = a
⇒ at x−1 = a− h we obtain a fictitious approximation U−1 = u(x−1)
⇒ we can introduce two new equations:

U1 − 2U0 + U−1

h2 + p(x0)
U1 − U−1

2h
+ q(x0)U0 = r(x0),

U1 − U−1

2h
= u′a.

Solving the second for U−1 yields

U−1 = U1 − 2hu′a.

We plug this into the first and obtain one equation

2U1 − 2U0 − 2hu′a
h2 + p(x0)u

′
a + q(x0)U0 = r(x0).

Note. This changes the first line, but we keep tridiagonality!
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(finally, again!) The Heat Equation

Let‘s (re-)introduce the time dependency of our PDE and consider
strategies to solve the PDE numerically. As a concrete example we
consider the heat equation.

We are given the equation, well known from a few weeks ago

∂

∂t
u(x , t) =

∂2

∂x2 u(x , t), 0 ≤ x ≤ 1

u(0, t) = g0(t), u(1, t) = g1(t), Boundary conditions
u(x , 0) = f (x) Initial conditions

where we are looking for a solution for the time interval [0,T ].
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Semi-Discretization
Idea. Combine the discretisation for BVP (in space)
with techniques for solving ODEs (in time).

Step 1. Discretize the x-direction: ChooseM ∈ N and let h = 1
M (last

slide a = 0, b = 1) and define the grid points

xi = ih, i = 0, . . . ,M

Note. For each grid point xi the function u(xi , t) is a function of time t
alone.

Step 2. Fix some arbitrary t ∈ [0,T ] and discretize the right hand side of
the PDE ( ∂2

∂x2 u) with a central difference :

∂u

∂t
(xi , t) =

u(xi+1, t)− 2u(xi , t) + u(xi−1, t)

h2 +O(h2).
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Semi-Discretisation II
Step 3. Ignore O(h2) amd introduce Ui (t) ≈ u(xi , t).
Plugging this into our PDE, we get

U ′
i (t) =

Ui+1(t)− 2Ui (t) + Ui−1(t)

h2 , i = 1, 2, . . . ,M − 1,

where on the left hand side we have U ′
i (t) =

d
dt

Ui (t).

This time we plug in the boundary conditions (here already in their
“new form”)

U0(t) = g0(t) and UM(t) = g1(t)

Into the first and last equation above. They read

U ′
1(t) =

U2(t)− 2U1(t) + U0(t)

h2 =
U2(t)− 2U1(t) + g0(t)

h2

U ′
M−1(t) =

UM(t)− 2UM−1(t) + UM−2(t)

h2 =
g1(t)− 2UM−1(t) + UM−2(t)

h2
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Semi-Discretication III: A System of ODEs

We further have the Initial conditions Ui (0) = f (xi ), i = 0, . . . ,M .

We obtain system of ordinary differential equations

U ′
i (t) =

Ui+1(t)− 2Ui (t) + Ui−1(t)

h2 , i = 1, 2, . . . ,M − 1,

U0(t) = g0(t),

UM(t) = g1(t),

which is called a semi-discretisation (in space) of the PDE.

This is also called the Method of Lines (MoL).
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The System of ODEs in Matrix form
We can write the system shorter in matrix form

U ′ =
1
h2

(
AU + g(t)

)
,

where

U =


U1
U2
...

UM−1

 ∈ RM−1, A =


−2 1

1
. . . . . .
. . . . . . 1

1 −2

 ∈ RM−1,M−1

and g(t) =


g0(t)

0
...
0

g1(t)

 ∈ RM−1.
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Semi-Discretization IV - Solving the ODEs

Step 4. Solve the system of ODEs by the method of your preference
(Numerical Methods for ODEs, lectures 13-16).

Example. We use Explicit Euler with a step size k :

Un+1
i = Un

i +r
(
Un
i+1−2Un

i +Un
i−1

)
, i = 1, 2, . . . ,M−1, where r :=

k

h2 .

Thus Un
i ≈ u(xi , tn) with tn = nk .

Note. We have space (i ) and time (n) indices here.
⇒ we denote time indices by superscripts, space indices by subscripts.
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A Numerical Example
Example 1. Solve the heat equation ∂

∂t
u =

∂2

∂x2 u on the interval
0 < t < 1 with the following initial and boundary conditions

u(x , 0) = sin(πx), Initial vaconditionslue,
g0(t) = g1(t) = 0. Boundary conditios.

Use step sizes k = 1
N and h = 1

M for N ∈ {20, 40, 80},M ∈ {4, 8, 16}.

The analytic solution of this problem is given by

u(x , t) = e−π2t sin(πx).

Example 2. Perform the same example with initial condition

u(x , 0) =

{
2x if 0 ≤ x ≤ 0.5,
2(1 − x), if 0.5 < x ≤ 1.
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Stability Analysis
The semi-discretized system U0(t) = g0(t),UM(t) = g1(t) and

U ′
i (t) =

Ui+1(t)− 2Ui (t) + Ui−1(t)

h2 , i = 1, 2, . . . ,M − 1, ,

is a linear ordinary differential equation:

U ′ =
1
h2

(
AU + g(t)

)
,

where
▶ U =

(
U1 U2 · · · UM−1

)T ∈ RM−1

▶ A =


−2 1

1
. . . . . .
. . . . . . 1

1 −2

 ∈ RM−1,M−1

▶ g(t) =
(
g0(t) 0 · · · 0 g1(t)

)T ∈ RM−1
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Stability Analysis and Eigenvalues

For our matrix 1
h2A we already learned in the numerics for ODEs

lectures that our step size k has to be chosen such that

|kλj + 1| ≤ 1, j = 1, . . . ,M − 1.

Since A is symmetric all its eigenvalues are real and this reduces to the
two inequalities

±(kλj + 1) ≤ 1 ⇔ −2 ≤ kλj ≤ 0.

We can even derive the Eigenvalues of A. They are

λj = −4 sin2
( jπ
M

)
, j = 1, . . . ,M − 1,

such that the Eigenvalues 1
h2A satisfy − 4

h2 < λj < 0.



29

Courant-Friedrich-Lax (CFL) number

Summary. The numerical solution is stable if k < − 2
λj

for all j , which

means that we obtain the condition

r =
k

h2 ≤ 1
2
.

This also known as Courant-Friedrich-Lax (CFL) number, and the
stability condition number above is also know as (parabolic)
CFL-condition (since the heat equation is the prototype example of a
so-called parabolic PDE.)
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Implicit Methods

A remedy are methods that handle so-called stiff ODEs well, where the
semi-discrete system is an example of.

These are the A(0)-stable methods like implicit Euler or the trapezoidal
rule, which is also called Crank-Nicolson.

Both start with the discretized system

U ′ =
1
h2

(
AU + g(t)

)
,
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Implicit Euler

The implicit Euler method is given by

Un+1 = Un + r AUn+1 + rg(tn+1), with r =
k

h2 .

where Un =
(
Un

1 Un
2 · · · Un

M−1
)T and Un

i ≈ u(xi , tn).

For each time step, we have to solve the system of linear equations

(IM−1 − r A)Un+1 = Un + r g(tn+1),

where IM−1 is the identity matrix of dimension (M − 1)× (M − 1).

Error Estimate. The error in the grid points is of order O(k + h2).
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Crank-Nicolson (trapezoidal rule)

The trapezoidal rule applied to the semi-discretized system is often
referred to as the Crank-Nicolson method. The method is A(0)-stable
and of order 2 in time⇒ better accuracy.

Un+1 = Un +
k

2h2A
(
Un+1 + Un

)
+

k

2h2

(
g(tn) + g(tn+1)

)
.

For each time step, we have to solve the system of linear equations

(IM−1 −
r

2
A)Un+1 = (IM−1 +

r

2
A)Un +

r

2
(
g(tn) + g(tn+1)

)
, r =

k

h2 .

Error Estimate. The error in the grid points is of order O(k2 + h2).
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Numerical Example (II)

Example 3. Solve the equation

ut = uxx , u(0, t) = e−π2t , u(1, t) = −e−π2t , u(x , 0) = cos(πx).

up to tend = 0.2 by implicit Euler and Crank-Nicolson.

Plot the solution and the error. The exact solution is
u(x , t) = e−π2t cos(πx).

Use N = M , andM = 10 andM = 100 (for example).

Note. There are no stability issues, even for large values of r . Also
notice the difference in accuracy for the two methods.


