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Problem and solution strategy

We want to find a numerical approximation to

J =

∫ b

a
f (x) dx .

We obtain this by approximating the integral as

J ≈
N∑

j=0

∫ xj+1

xj

pk(x) dx =
N∑

j=0

Jj

where pk is the interpolation polynomial of degree k = 0, 1, 2.
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Geometric picture

h

f(x)

xx1 x2 x3 x4 = bx0 = a
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We use k = 0.

In each subinterval we use a constant value for the function. This
yields

Jj =

∫ xj+1

xj

f (tj) dx = hf (tj)

J ≈ h
N∑

j=0

f (tj)

The best choice for the tj is to choose them in the middle of each
interval, that is

tj = xj +
h

2
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We use k = 1.

f(x1)

x1 x2

f(x2)

f(x)

x

h

Figure: In each subinterval we approximate the function as a straight line.
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We use k = 1.

We introduce the variable s = (x − xj)/h. This means that in each
subinterval we have

p1(s) = fj + (fj+1 − fj) s

Taking the integral gives us

Jj = h

∫ 1

0
p1(s) ds = h

(
fjs +

1

2
(fj+1 − fj) s2

∣∣∣∣1
s=0

)
=

h

2
(fj + fj+1)

Finally we take the sum. Every point except the end points will get
two contributions:

J ≈ h

2
f0 + h

N∑
j=1

fj +
h

2
fN+1
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We use k = 2.

2h

• Need an even number of subintervals.

• Divides in segments of three nodes.

• In each segment we approximate the function as a second
order polynomial.
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We use k = 2.

In one subinterval we find p2(x) using Lagrangian interpolation

p2(x) =
(x − xj+1)(x − xj+2)

(xj − xj+1)(xj − xj+2)
fj

+
(x − xj)(x − xj+2)

(xj+1 − xj)(xj+1 − xj)
fj+1 +

(x − xj)(x − xj+1)

(xj+2 − xj)(xj+2 − xj+1)
fj+2

Introduce s = (x − xj+1)/h. This gives

p2(s) =
1

2
s(s − 1)fj + (s + 1)(s − 1)fj+1 +

1

2
(s + 1)sfj+2
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We use k = 2.

We then integrate of the segment (s = −1 · · · 1):

Jj ≈
h

3
(fj + 4fj+1 + fj+2)

• Every ’right’ node get two contributions, apart from the end
point.

We take the sum and obtain

J ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·+ 4fN + fN+1)
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Maximal polynomial order

• We now assume that f (x) IS a polynomial.

• We allow weights in the integral points, i.e.∫ 1

−1
f (x) dx ≈

N∑
j=1

ωj fj

Note that we always work on a normalized interval.

• We can place the nodes whereever we want to within the
subinterval. We are not restricted to having the nodes on the
end points.

• This means that we have 2N degrees of freedom - N weights
and N points.

• We know that with 2N parameters we can choose freely, we
are able to interpolate a polynomial of degree 2N − 1.



The rectangular rule The trapezoidal rule Simpson’s rule Gaussian quadrature - maximal order Adaptiv integration

Maximal polynomial order

• This means that we can integrate a polynomial of degree 3
exactly using only 2 nodes.

• The nodes xj are roots of Gaussian polynomials, we won’t go
into details here.

• With n = 2 we have:

ω1 = ω2 = 1

x1 = −0.57, x2 = 0.57

• Note that we need to be able to evaluate the function at any
point within the subintervals to apply these methods.
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Summary

Method Order Degree Integrates exactly Error estimate

Midpoint 1 0 1
Trapezoidal 2 1 1 1

3

(
Jh/2 − Jh

)
Simpsons’s 4 2 3 1

15

(
Jh/2 − Jh

)
All formulas have about the same amount of work ⇒ use Simpsons
if you can. Symmetry gives us the extra precision.
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The Romberg method

• Idea: Use small h where the function has large variability (f (n)

is large) and larger h where it is varies less.

• First we find an approximation using only one interval. We
also decide a global error tolerance (which obviously should be
less than the error we have using only one subinterval).

• We then half the interval and calculate the error using the
error estimate.

• If this error is too large, divide again.

• This is called the Romberg method.

• Can be used with any numerical integration scheme as long as
we have an error estimate.
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Example: application of Romberg’s method

J =

∫ 2

0

1

4
πx4 cos

πx

4
dx = 1.25953

• We use h = 1.

• We use Tol = 0.0002.

• We use Simpson’s rule.

• First the entire segment:

J = 0.740480
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Example: application of Romberg’s method

J =

∫ 2

0

1

4
πx4 cos

πx

4
dx = 1.25953

Interval Integral Error Tol Decision

[0, 2] 0.740480 0.0002

[0, 1] 0.1222794
[1, 2] 1.10695

Sum=1.122974 0.032617 0.0002 Del

[0.0, 0.5] 0.004782
[0.5, 1.0] 0.118934

Sum=0.123716∗ 0.000061 0.0001 Ok

[1.0, 1.5] 0.528176
[1.5, 2.0] 0.605821

Sum=1.13300 0.001803 0.0001 Del
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Example: application of Romberg’s method

J =

∫ 2

0

1

4
πx4 cos

πx

4
dx = 1.25953

Interval Integral Error Tol Decision

[1.00, 1.25] 0.200544
[1.25, 1.50] 0.328351

Sum=0.528895∗ 0.000048 0.00005 Ok

[1.50, 1.75] 0.388235
[1.75, 2.00] 0.218457

Sum=0.606692 0.000058 0.00005 Del

[1.500, 1.625] 0.196244
[1.625, 1.750] 0.192019

Sum=0.388263∗ 0.0000002 0.000025 Ok
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Example: application of Romberg’s method

J =

∫ 2

0

1

4
πx4 cos

πx

4
dx = 1.25953

Interval Integral Error Tol Decision

[1.750, 1.875] 0.153405
[1.875, 2.000] 0.328351

Sum=0.218483∗ 0.000002 0.000025 Ok
We find our approximation as

J ≈ 0.123716 + 0.528895 + 0.388263 + 0.218483 = 1.25936
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