
Numerical linear algebra

Arne Morten Kvarving

Department of Mathematical Sciences
Norwegian University of Science and Technology

October 29 2007

Problem and solution strategy

• We want to solve the system

Ax = b , b , x ∈ RN ,A ∈ RNxN .

• From linear algebra we know that the solution is given by

x = A−1b

• Very common problem in numerics, as a problem of its own
but even more often as a substep in another algorithm.

• Naming scheme:
a11 a12 · · · a1N

a21 a22 · · · a2N
...

. . .

aN1 · · · aNN




x1

x2

. . .

xN

 =


b1

b2

. . .

bN



Solution strategy

• The solution strategy we choose depends on the properties
and the structure of the matrix A .

• Stupidly simply example: A is an orthogonal matrix. We have
that

A−1 = A T

so we solve the system as

x = A Tb .

Transposing a matrix is very cheap compared to finding its
inverse.

• SPD matrices.
• A = diag (a11, a22, · · · , aNN)

Solve by

xi =
bi

aii
, ∀ i ∈ [1,N].

• Sparse matrix structure

General matrices

• For general matrices we have learned the solution strategy in
Mathematics 3 (i.e. your basic linear algebra course).

• Cramer’s rule - based on finding Nth order determinants. Has
a computational complexity which scales as N! and very prone
to round off errors. Totally unapplicable in real life - just a
theoretic tool.

• Gaussian elimination.

Gaussian elimination

• Gaussian elimination is a systematic elemination process
which lets us put the matrix in a triangular form

x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x

 .

• With the matrix on triangular form we can easily solve the
system using backward substitution.

3x1+5x2+ 2x3 = 8

8x2+ 2x3 = −7

6x3 = 3

Backward substitution

• The last equation only involves one unknown:

x3 =
3

6
=

1

2

• Since we now know the value of x3 we can stick this into the
second equation, and we again have an equation involving
only one unknown:

x2 =
−7− 2x3

8
=
−7− 1

8
= −1.

• The same procedure for the first equations yields

x1 =
8− 2x3 − 5x2

3
=

8− 1 + 5

3
= 4.

• This is a systematic process, suited for implementation on a
computer.

Obtaining the triangular form

• As before our system is of the form

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2

... =
...

• We want to get rid of the term a21x1. We do that by applying
the operation
(row 2) = (row 2)-a21

a11
(row 1).

• This gives the system

a11x1 + a12x2 + · · ·+ a1NxN = b1

0 +

(
a22 −

a21

a11
a12

)
x2 + · · ·+ a2NxN = b2 −

a21

a11
b1

... =
...

Obtaining the triangular form

• We repeat this
• for all rows
• for all columns under the diagonal

• Requirement: We need akk 6= 0. If not, we have to reorder the
rows - this is known as pivoting.

• Additionally, we would like akk >> 0 to avoid cancellation
errors. We minimize this problem by always choosing the row
with the largest akk - this is known as partial pivoting.

LU factorization

• This is Gaussian elimination (almost) like Matlab does it, and
in general this is the way it is implemented in most software
used today.

• We want to find two matrices L and U such that

A = LU .

where L is lower triangular and U is upper triangular.
• Why? Because

Ax = b

LU x = b ⇒
L v = b

U x = v

where we can solve the two last equations using forward
substitution for the first and then backward substitution for
the second.

Doolittle’s method

Doolittle: Choose ones on the diagonal of L :

• For an example system of dimension 2;

A =

[
2 3
8 5

]
=

[
1
l21 1

] [
u11 u12

u22

]
= LU

This yields

u11 = 2, u12 = 3

2l21 = 8 ⇒ l21 = 4

4 · 3 + u22 = 5 ⇒ u22 = −7,

that is

L =

[
1
4 1

]
,U =

[
2 3

−7

]

Doolittles metode - Algorithm

• We apply the following steps

u1k = a1k k = 1, · · · ,N

lj1 =
aj1

u11
j = 2, · · · ,N

ujk = ajk −
j−1∑
s=1

ljsusk k = j , · · · ,N, j ≥ 2

ljk =
1

ukk

(
ajk −

k−1∑
s=1

ljsusk

)
j = k + 1, · · · ,N, k ≥ 2

Crout’s method

Crout: Choose ones on the diagonal of U :

• For an example system of dimension 2 this reads

A =

[
2 3
8 5

]
=

[
l11
l21 l22

] [
1 u12

1

]
= LU

This yields

l11 = 2, l21 = 8

2u12 = 3 ⇒ u12 =
3

2

8 · 3

2
+ l22 = 5 ⇒ l22 = −7,

that is

L =

[
2
8 −7

]
,U =

[
1 3

2
1

]

LU factorization

• Both of these factorizations are unique.

• Some matrices cannot be LU factorized. In that case we need
to apply row exchange operations.[

0 1
1 1

]
,

[
0 1
1 0

]
• The obvious benefit of doing Gaussian elimination in this way

is that we can calculate L and U once, and then use them to
solve the problem for many different b . In its usual form,
Gaussian elimination requires us to modify the vector b prior
to finding the solution.

Cholesky’s method

• We now have a symmetric, positive definite matrix (SPD)
matrix A , that is

• x TAx > 0 ∀ x 6= 0 .
• A is symmetric, i.e. A = A T .
• This is the same as saying that all the eigenvalues of A are

real and positive.
• We can then choose U = L T ! With a general diagonal.

Cholesky’s method - example

• We use the matrix [
2 1
1 2

]
.

The matrix is obviously symmetric and its eigenvalues are
given by λ1 = 1, λ2 = 3. So this matrix is definitely SPD.

• We want to find

A = L L T =

[
a
b c

] [
a b

c

]
=

[
2 1
1 2

]

Cholesky’s methode - example

• We decide the values for a, b, c by

a2 = 2 ⇒ a =
√

2

ab = 1 ⇒ b =
1√
2

=

√
2

2

b2 + c2 = 2 ⇒ c =

√
2− 1

2
=

√
6

2

Cholesky’s method - algorithm

• We do the following steps

l11 =
√

a11 (1)

lj1 =
aj1

l11
(2)

ljj =

√√√√ajj −
j−1∑
s=1

l2js j = 2, · · · ,N (3)

lpj =
1

ljj

(
apj −

j−1∑
s=1

ljs lps

)
p = j + 1, · · · ,N, j ≥ 2 (4)

Cholesky’s method - another example

To show how to apply these operations in actual compuations we
look at the problem

A =

 4 2 14
2 17 −5
14 −5 83

 =

l11
l21 l22
l31 l32 l33

l11 l21 l31
l22 l32

l33

 .

(1)
l11 =

√
a11 = 2

(2)

l21 =
a21

l11
= 1, l31 =

a31

l11
= 7

(3)

l22 =
√

a22 − l221 =
√

17− 1 = 4

Cholesky’s method - another example

A =

 4 2 14
2 17 −5
14 −5 83

 =

l11
l21 l22
l31 l32 l33

l11 l21 l31
l22 l32

l33

 .

(4)

l32 =
1

l22
(a32 − l21l31) =

1

4
(−5− 7 · (−1)) = −3

(3)

l33 =
√

a33 − l231 − l232 =
√

83− 72 − (−3)2 = 5

Cholesky’s method

Theorem

Cholesky factorization is numerically stable.

ajj = l2j1 + · · ·+ l2jj (take the square of (3))

Hence any element in this sum satisifies

l2jk ≤ l2j1 + · · ·+ l2jj = ajj

This means that there will be no problems with numbers growing
beyond control ⇒ small risk of cancellation errors as long as the
matrix A is “kind” initially.

How to construct the inverse of a matrix

• In general, explicit construction of the inverse of a matrix is
something you should never do, atleast not unless it is
absolutely necessary.

• If we really need to do it, one way to proceed is as follows:
Solve

Ax = b for b ∈


1
0
0
...
0

 ,


0
1
0
...
0

 , · · ·

• Put the obtained x -vectors as columns in a matrix. This
resulting matrix is exactly the inverse of A .

• This is the same as solving the matrix-matrix equation

AX = I

Evaluating a numerical method

• When we want to evaluate the efficiency of a numerical
method, we need to take several aspects into consideration.
These include

• storage requirements
• computational time requirements
• stability
• for parallel NUMA-computers; data locality.

• As mentioned earlier, the computational time required can be
measured in (atleast) two ways:

• Actual user time / wall clock time. This will depend strongly
on the hardware involved.

• How the amount of operations required scales with the
problem size - in general this is much more interesting.

From this point of view a better computer does not solve a
problem faster, it can just solve larger problems.

Evaluating a numerical method

• It is very tempting to think that todays computers are so
powerful that it is not imperative to solve things in the most
efficient way possible. However, I will be as bold as to say it is
even more important than before! The reason is that more
powerful computers makes us able to solve more complex
problems. However algorithms seldom scale linearly so we will
be penalized severly, more severe than before, simply because
our problems are much larger.

• Example: Gaussian elimination needs O
(
N3
)

operations -

OUCH!

N T

10 1000s = 17min
100 1 · 106s = 11 days
1000 1 · 109s = 31 years

It is worth noting that N = 1000 is far from a large problem -
we often solve problems with millions of unknowns.

How to construct the inverse in a smarter way

• As an example of how this works, we will find the inverse of
the matrix  3 5 2 1

8 2 1
6 1


• We scale each row in order to obtain 1 on the diagonal: 1 5

3
2
3

1
3

1 1
4

1
8

1 1
6



How to construct the inverse in a smarter way

• We do the operation (row 1) = (row 1)-5
3(row 2) 1 1

4
1
3

−5
24

1 1
4

1
8

1 1
6


• We do the operation (row 1) = (row 1)-1

4(row 3) 1 1
3

−5
24

−1
24

1 1
4

1
8

1 1
6



How to construct the inverse in a smarter way

• We do the operation (row 2) = (row 2)-1
4(row 3) 1 1

3
−5
24

−1
24

1 1
4

1
8

1 1
6


• The matrix on the right hand side is now A−1!

• The way we obtained it is systematic - suited for
implementation on a computer.

• The method will be considerably faster than the previous
proposed one.

Iterative equation solvers

• Gaussian elimination is a direct method - we obtain the
“correct” solution using a fixed number of operations. The
number of required operations are often too high. Another
problem with (general) Gaussian elimination is that it does
not exploit the structure of the matrix, such as sparseness.

• Often we do no need to solve the system of equations exactly.
The reason for this can be that it is only a substep in some
other algorithm where we already have several sources of
errors.

• We then resort to using iterative equation solvers - indirect
methods.

Fixed point iterations

• It is tempting to try the iterative schemes we have looked at
previously.

• Fixed point iterations:

f (x) = 0 = g (x)− x

A x − b = 0 = g (x)− x ⇒
(A + I)x − b = x ⇒ x k+1 = (A + I)x k − b

This will seldom work as the requirement of g being a
constraction is the same as demanding that

max
i
|λi (I + A)| < 1

something which is an extremely strict condition and hence
very seldom fulfilled.

Newton iterations

• Newton iterations:

x k+1 = x k − A−1
(
Ax k − b

)
= A−1b .

But this is exactly what we try to solve in the first place!

New strategy

• We need new iterative methods that works better for linear
systems of equations.

• General strategy: Split the matrix A .

A = D + L + U
. . . 0 0

0
. . . 0

0 0
. . .

+


0 0 0
... 0 0
... · · · 0

+

0 · · ·
...

0 0
...

0 0 0


Important: L and U are NOT the same matrices that are
involved in LU -factorization.

Gauss-Jakobi and Gauss-Seidel iterations

• We now consider

Ax = b

(D + L + U)x = b

D x = b − L x − U x ⇒

x k+1 = D −1
(
b − L x k − U x k

)
This is Gauss-Jakobi iterations.

• We can order the terms differently;

Ax = b

(D + L + U)x = b

(D + L)x = b − U x ⇒

x k+1 = (D + L)−1
(
b − U x k

)
This is Gauss-Seidel iterations.

The iterations stated in component form

• Gauss-Jakobi:

xk+1
j =

1

ajj

bj −
n∑

i=1,i 6=j

ajix
k
i


• Gauss-Seidel:

xk+1
j =

1

ajj

bj −
j−1∑
j=i

ajix
k+1
i −

n∑
i=j+1

ajix
k
i


• Question: What is the actual difference between these two

methods?

Gauss-Jakobi and Gauss-Seidel - an example

• We consider the problem[
7 −6
−8 9

] [
x1

x2

]
=

[
3
−4

]
• Gauss-Jakobi:

xk+1
1 =

1

7

(
3− a12x

k
2

)
=

6

7
xk
2 +

3

7

xk+1
2 =

1

9

(
−4− a21x

k
1

)
=

8

9
xk
1 −

4

9

• Gauss-Seidel:

xk+1
1 =

1

7

(
3− a12x

k
2

)
=

6

7
xk
2 +

3

7

xk+1
2 =

1

9

(
−4− a21x

k+1
1

)
=

8

9
xk+1
1 − 4

9

Some observations

• The actual difference between the methods is the fact that
Gauss-Seidel iterations use new iteration values as soon as
they are available.

• So why even consider Gauss-Jakobi iterations? - Well, in
parallel implementations we want to avoid data exchange
during the iterations.

• Both of these methods (as well as many more) can be stated
in the form

M x k+1 = N x k + b ⇒
x k+1 = M −1N x k + M −1b

• Gauss-Jakobi has M = D ,N = −(U + L).

• Gauss-Seidel has M = D + L ,N = −U .

Convergence of the methods

• First : By convergence we here mean that the sequence

x 0, x 1, · · · , x k

converges to the exact solution of Ax = b .

• A very common way to measure the error is using the residual
error.

r = b − Ax k

• Here we use another definition, namely the displacement error

d k = x k − x .

The problem of convergence can now be stated as: What is
the value of d k+1 given d k ?

Convergence of the methods

• We insert our iterative scheme into the definition of the
displacement error and get

d k+1 = x k+1 − x = M −1N x k + M −1b −
(
M −1N x + M −1b

)
= M −1N

(
x k − x

)
= M −1N d k

• We now apply this recursively to obtain

d k =
(
M −1N

)k
d 0.

• For convergence we need “M −1N < 1” in some sense. We
need a measure for the size of a matrix - this measure is
known as a norm.

Matrix norms

• There are several ways to measure the size of a matrix.

• They have a rigorous definition which we skip here.

• The Frobenius norm:

‖A‖F =

√∑
i

∑
j

a2
ij

• The one-norm - largest column sum

‖A‖1 = max
i

∑
j

|aij |

• The two-norm - largest row sum

‖A‖2 = max
j

∑
i

|aij |

Convergence of the methods

• Two results for norms which we use here are
• Over RNxN all norms are equivalent. That is, for any pair of

norms, ‖ · ‖a, ‖ · ‖b we can find constants c1 and c2 such that

c1‖ · ‖a ≤ ‖ · ‖b ≤ c2‖ · ‖a.

• The spectral radius of a matrix A is defined as

ρ(A) = max
i
|λi |

where λi is the i’th eigenvalue of the matrix A . We then have
the result that

ρ(A) = inf
‖·‖
‖A‖,

that is the spectral radius is the smallest measure of the size of
a matrix we can find.

Convergence of the methods

• Since all norms are equivalent, convergence in one norm
implies convergence in all others.

• Hence it is sufficient to consider the norm with the smallest
value - we can consider the spectral radius of the matrix.

• Our condition for convergence hence reads

lim
k→∞

d k = 0 ⇔ ρ(M −1N) < 1

