
Numerical solution of ODEs

Arne Morten Kvarving

Department of Mathematical Sciences
Norwegian University of Science and Technology

November 5 2007

Problem and solution strategy

• We want to find an approximation to the solution of

dy

dt
= f (t, y(t))

y(t0) = y0.

• I usually name the independent variable t, while Kreyzig uses
x . The reason is that I find it more intuitive - we call this kind
of problem an initial value problem.

• We know that the solution is given by

y(t) = y0 +

∫ t

t0

f (s, y(s))ds.

• It is tempting to try the numerical integration rules we have
considered earlier. However, these are only valid for
autonomous systems:

dy

dt
= f (y(t)), y(t0) = y0.

Problem and solution strategy

• There are two main classes of solution methods for ODEs:
First one is one step methods (named so because we only use
the value of y at one time level to approximate the value at
the next level.

• The other class is multistep methods. These use the value of
y at several time levels to approximate the solution at the
next level. These methods are not part of the curriculum.

• Additionally, the two classes of methods can each be divided
into two parts again:

• Explicit methods. These are methods where we only use known
data to approximate the solution at the next time level.

• Implicit methods. These are methods where we have to solve a
system of equations at each time level. In general the system
of equations will be nonlinear and we have to use a method for
solving nonlinear systems of equations - e.g. Newton’s method.
This makes these methods very expensive to use, however in
some cases they still are the best choice - for stiff equations.

Euler’s method

f(t, y)

y(t)
y

t

At each point the differential equation gives the direction of the
solution.

Euler’s method

• Naive method: In each point f describes the tangent of the
solution.

• We do a step of size h along this tangent.

• This gives the method

yn+1 = yn + hf (tn, yn).

It is known as Euler’s method.

• We can also motivate the method using Tayler expansion:

y (tn+1) = yn + hy ′n +
h2

2
y ′′n +O

(
h3
)

= yn + hf (yn) +
h2

2
y ′′n (tn) +O

(
h3
)
.

Euler’s method

• From the Taylor expansion we see that in each step we do an
error which is O

(
h2
)
. This is known as the local error: Assume

that we do one step starting with exact value yn = y(tn),

|y(tn + h)− yn+1| =
h2

2
y ′′(tn) +O

(
h3
)

= O
(
h2
)

• This error will propagate since we take many steps.

• One can show that this propagation gives us one order lower
in the global error. Assume that we start we y0 = y(t0) and
do n steps of size h:

|y(t0 + nh)− yn| = O (h)

This means that Euler’s method is a first order method.

Euler’s method

• Coincides with the rectangular rule for numerical integration.

• Erwin Kreyzig claims that this method is “never used in real
computations”.

• This is not true. We sometimes have to use it, for instance
when evaluating f is very costly.

• “Preferably avoided” is a better way to put it.

• It is often the starting point when we want to construct better
methods.

Heun’s method: Improved Euler

y

tn tn+1

f(tn+1, yn+1)

yn + h

2
(f(tn, yn) + f(tn+1, yn+1))

f(tn, yn)

t

We use the mean of two tangents.

Heun’s method: Improved Euler

• Euler only utilizes the tangent in the starting point of the
interval.

• If you remember the trapezoidal rule, what we did was that
we use the mean of the tangents at the starting point and at
the ending point of the subinterval.

• This yields the trapezoidal rule for ODEs:

yn+1 = yn +
h

2
(f (tn, yn) + f (tn+1, yn+1)))

As you can see, this is an example of an implicit method.

• What happens if we replace f (tn+1, yn+1) with
f (tn+1, yn + hf (tn, yn))? That is, we approximate the solution
at the end point using a normal Euler step.

Heun’s method: Improved Euler

• This yields Heun’s method:

k1 = f (tn, yn)

k2 = f (tn+1, yn + hk1)

yn+1 = yn +
h

2
(k1 + k2)

Note the particular form we write the method on - you will
understand why later.

• We consider the Taylor expansion:

|y(tn + h)− yn| = hy ′(tn) +
h2

2
y ′′(tn) +O

(
h3
)

= hf (yn) +
h2

2
f ′(yn) +O

(
h3
)

Heun’s method: Improved Euler

• The derivative can be approximated by

f ′(tn, yn) =
f (yn+1)− f (yn)

h
+O (h)

≈ f (yn + hf (yn))− f (yn)

h
+O (h)

The error we make by approximating f (yn+1) using an Euler
step is, as stated earlier, O

(
h2
)
. Due to the h in the

denominator this error will also be O(h) and hence it is
included in the term O(h).

• We now insert this into the Tayler expansion and find

|y(tn + h)− yn| = hf (yn)

+
h2

2

(
f (yn + hf (yn))− f (yn)

h

)
+

h2

2
O (h) +O

(
h3
)
.

Heun’s method: Improved Euler

• From this we deduce that Heun’s method has a local error of
order 3, and hence the global error is of order 2 - Heun’s
method is a second order method.

• The method can also be stated in the form

y∗n+1 = yn + hf (tn, yn)

yn+1 = yn +
h

2

(
f (tn, yn) + f

(
tn+1, y

∗
n+1

))
When stated on this form we see that the method is a so
called predictor-corrector-method.

• We first “predict” a solution in the first step, then we
“correct” this prediction in the second step.

Runge-Kutta methods

• The change we did from Euler → Heun can be systemized.

• We calculate k1, k2, k3, · · · , ks -values within the interval.
These are calculated using methods with lower order.

• Finally we use a weighted sum of these k’s.

• In general the methods can be put in the form

kr = f

tn + crh, yn + h
r∑

j=1

arjkj

 , r = 1, 2, 3, · · · , s

yn+1 = yn + h
s∑

r=1

brkr

We call s the number of stages in the method.

Runge-Kutta methods

• There are infinitely many methods on this form. We can
construct methods of arbitrary order (finding methods with
high order is far from trivial though), and these methods are
OFTEN used in real life applications.

• These methods can be classified by
• the matrix A (how much shall we weigh each k-value at each

stage?).
• the vector c (at which time level is the stage an approximation

of the tangent?)
• the vector b (how much shall we weigh each k-value in the

final update?).

• This information is often presented in a RK-tableaux, which is
of the form

c A

b T

Runge-Kutta methods

• Here we only consider explicit methods. This means that
• The first stage will always consist of evaluating f at the

starting point - it is the only information we have at hand.
• The matrix A must be strictly lower triangular (no diagonal

elements).

• This means that our tableaux is of the form

0 0 0 0 · · ·

c2 a21 0
...

...

c3 a31 a32 0
...

...
...

...
...

. . .

b1 b2 b3 · · ·

Runge-Kutta methods

• Inserting this info into the general form our methods can be
stated as

k1 = f (tn, yn)

kr = f

tn + crh, yn + h
r−1∑
j=1

arjkj

 , r = 2, 3, · · · , s

yn+1 = yn + h
s∑

r=1

brkr

Runge-Kutta methods

• Let us find the tableaux for Heun’s method, that is the
method

k1 = f (tn, yn)

k2 = f (tn+1, yn + hk1)

yn+1 = yn +
h

2
(k1 + k2) .

• We have s = 2 stages. We have c1 = 0 (since it is an explicit
method), c2 = 1, b1 = 1

2 and b2 = 1
2 .

• Again, since this is an explicit two-stage method, we have
only one coefficient different from zero in the matrix A ,
namely a21 = 1. Together this gives the tableaux

0
1 1

1
2

1
2

Runge-Kutta methods

• Here we consider a much used method, ERK4.

• As the name indicate this is an explicit Runge-Kutta method
of order 4.

• The tableaux is given by

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

Runge-Kutta methods

• Utilizing the coefficients given, we can explicitly state the
method as

k1 = f (tn, yn)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
k4 = f (tn + h, yn + hk3)

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

• This method concides with Simpson’s method for autonomous
systems.

Error control - adaptive solvers

• It is of great interest to be able to control how large an error
we make.

• As motivation you can consider the same scenario as we had
in adaptive numerical integration: We would like to use small
h where the solution varies alot, while using a larger h where
the solution varies less.

• Two approaches:
• As in numerical integration - use different values for h.
• Use two different methods of different order.

Error control - varying the step size

• We apply the same method twice, first with a stepsize 2h,
then twice with a step size h.

• As an example, consider ERK4.
• First we use step size 2h to obtain the approximation ỹ . This

yields

y(2h)− ỹ =
1

2
C (2h)5 = 16ε

That is, we have ε = Ch5. The factor 1
2 is there as we will do

half the amount of steps using step size 2h.
• We then do two steps with step size h to obtain ˜̃y . This yields

y(2h)− ˜̃y = ε

• We now have two expressions for y(2h) and we find that

y(2h) = ỹ + 16ε = ˜̃y + ε ⇒

ε =
1

15

(
˜̃y − ỹ

)

Error control - varying the step size

• This approach is very expensive to use in real life
computations. Why? Because we do a considerable amount of
extra work just to be able to estimate the error done in a step.

• It is of interest to find methods where the error estimate
comes approximately “free”, that is, methods that lets us
avoid doing much extra work just to estimate the error.

• One way to do this is by varying the order of the method
instead of the step size.

Error control - varying the order

• Example: RKF45

RKF4 : ỹ = y(h) +O
(
h5
)

RKF5 : ˜̃y = y(h) +O
(
h6
)

˜̃y − ỹ ≈ Ch5.

We assume that Ch6 << Ch5. Hence we have an error
estimate for solution obtained using RKF4.

• We can combine many methods in this way, for example
Euler-Heun. The important part is that we can evaluate the
method of higher order cheap once we have done the
calculations needed for the lower order method. For
Runge-Kutta methods this means that we are searching for
methods which employs the same k values, that is, the only
difference between the two methods should be the vector b .

Summary - explicit methods

Method Function evaluations Global error Local error

Euler 1 1 2
Heun 2 2 3
RK4 4 4 5
RKF4 5 4 5
RKF5 6 5 6
RKF 6 4 5

Note that RKF4 is not a good method for “strict” 4. order since
we use 5 function evaluations.

Summary - explicit methods

• All the methods we have considered works nicely for systems
of first order ODEs.

• The formulas are exactly the same, the only difference is that
we have to do everything on vectorial form.

• If we are given a scalar m’th order ODE

y (m) = f
(
t, y , y ′, y ′′, · · · , y (m−1)

)
,

we can state it as a system of first order ODEs in order to be
able to apply our methods.

• Hence there has been very little focus on methods for higher
order ODEs. One exception is the Runge-Kutta-Nyström
schemes.

How to make a system out of a higher order ODE

• We are given a scalar m’th order ODE

y (m) = f
(
t, y , y ′, y ′′, · · · , y (m−1)

)
.

• We introduce vector components

y1 = y

y2 = y ′

y3 = y ′′

...

ym = y (m−1).

This is basically just a renaming of the variables involved.

How to make a system out of a higher order ODE

• If we now insert this into our problem, we get a system of
ODEs:

y ′1 = y2

y ′2 = y3

...

y ′m = f (t, y1, y2, y3, · · · , ym)

• One application of this of particular interest: Introduce

y1 = t

y2 = y .

This allows us to state our equation in autonomous form as(
y1

y2

)′
=

(
1

f (y)

)
.

Runge-Kutta-Nyström methods

• Consider the equation

y ′′ = f
(
t, y , y ′

)
• We apply our trick to state it as a system of first order ODEs,

y ′1 = y2

y ′2 = f (t, y1, y2) .

• Now, assume that f does not depend on y ′. It then turns out
that if we apply (particular) RK methods to the system, two
or more stages will coincide, and hence the methods will be
cheaper. These methods are known as RKN methods.

Why consider implicit methods - stiff equations

• Consider the equation (in this context known as the
Dahlquists test equation)

dy

dt
= λy

y(0) = y0

• We know that the exact solution is given by

y(t) = y0e
λt .

This solution exists for t →∞ if and only if Re λ < 0. This
behaviour of the solution is something we would like our
numerical solution to reflect.

• What happens if we apply Euler’s method to this equation?

yn+1 = yn + hf (tn, yn) = yn + hλyn = (1 + hλ) yn

Applying this recursively we obtain

yn = (1 + hλ)n y0.

Why consider implicit methods - stiff equations

• Hence, if the method should yield a solution for
t →∞⇔ n →∞ we need

|1 + hλ| < 1.

• We now let z = hλ. The area where we get a stable solution
is plotted in the Figure beneath. Remember, the exact
solution is damped for all λ ∈ C− while the method only
dampens the solution in the filled area.

Why consider implicit methods - stiff equations

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re z

Im
 z

Stability area for Euler’s method.

Why consider implicit methods - stiff equations

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re z

Im
 z

Stability area for Heun’s method.

Why consider implicit methods - stiff equations

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−3

−2

−1

0

1

2

3

Re z

Im
 z

Stability area for explicit RK4.

Why consider implicit methods - stiff equations

• This means that if λ is large, we have to use a very small h to
stay within the stability area.

• So how does this relate to general equations? Let us consider
a system of equations of the form

dy

dt
= Ay

and that the matrix A can be diagonalized. That is, we can
find Q and Λ such that

Q Λ Q T = A .

where Q is an orthogonal matrix with the eigenvectors of A
as columns and Λ an diagonal matrix with the eigenvalues of
A along the diagonal.

Why consider implicit methods - stiff equations

• We now insert this into the equation to obtain

dy

dt
= Ay

= Q Λ Q T y

Since Q is orthogonal, its inverse is given by Q −1 = Q T . We
multiply with this from the left:

Q T dy

dt
= Λ Q T y ⇒

dz

dt
= Λ z

where we have set z = Q T y .

Why consider implicit methods - stiff equations

• Hence we have one equation of Dahlquist type along each
eigenvalue of the matrix A (remember, Λ is diagonal and
hence there are no coupling between the equations).

• We need to stay within the stability area for each eigenvalue -
which means that the largest eigenvalue dictates the
maximum step size we can use.

• If A has one eigenvalue with a large amplitude, the equation
is said to be stiff.

Why consider implicit methods - stiff equations

• Now, what happens for an implicit method? Let us consider
the trapezoidal rule applied to the test equation:

yn+1 = yn +
h

2
(λyn + λyn+1)(

1− hλ

2

)
yn+1 =

(
1 +

hλ

2

)
yn ⇒

yn =

(
1 + hλ

2

1− hλ
2

)n

y0

• The area where this gives a stable solution includes the entire
left half plane. That is, the method gives a stable solution
wherever the exact solution exists. This property of a method
is called A-stability, and one can show that no explicit method
can be A-stable. This means that we have no restriction on
the step size.

Why consider implicit methods - summary

• For some equations the restrictions on the step size we need
to honor if we use an explicit method is so strict that the
methods are practically useless in real life applications.

• We then resort to implicit methods. Even if we have to solve a
system of equations for each step, the total algorithm is still
cheaper since we can choose step size based on accuracy
considerations only.

