
Numerical solution of PDEs

Arne Morten Kvarving

Department of Mathematical Sciences
Norwegian University of Science and Technology

November 6 2007

Problem and solution strategy

• This far we have considered ordinary differential equations
where the solution only depends on one free variable.

• We now consider partial differential equations - equations
where the solution depends on two (in general several) free
variables.

• A general format for second order quasilinear PDE in two
variables:

auxx + 2buxy + cuyy = F (x , y , ux , uy)

These can again be categorized in three subclasses.

Classification of problems

• ac − b2 > 0: We have an elliptic equation.
Example: Laplace

∇2 = 0, (a = c = 1, b = 0)

• ac − b2 = 0: We have a parabolic equation.
Example: The heat equation

ut = uxx , (a = 1, b = c = 0, F = ut)

• ac − b2 < 0: We have a hyperbolic equation.
Example: The wave equation

utt = uxx , (a = 1, b = 0, c = −1)

These are not part of the curriculum.

Classification of problems

?
tid

x

Initial value problem - given a solution at t = 0, we seek to find
the solution forward in time.

Classification of problems

• We now consider boundary value problems:

?
x

y

Fundamental difference!

Classification of problems

• Our problem now is: Given the values on the boundary, find
the values within the domain.

• Two different types of boundary values we can be given are
• Dirichlet boundary conditions: The solution is equal to a given

function on the boundary. These are simple to handle.
• Neumann boundary conditions: The derivative of the solution

is known along the boundary. More difficult to handle, in
particular in an implementation. Not part of the curriculum.
One situation where these boundary values shows up is when
we have a given heat flux over the boundary.

Solution strategy

• We introduce a grid and replace the derivative in the equation
with numerical approximations. We then try to satisfy the
equation approximately in the grid points. We end up with a
system of linear equations we need to solve. The solution of
this system is our approximation to the solution in the grid
points. We do not obtain the solution inside the grid cells. If
we need values within cells we have to resort to interpolation.

• These methods are known as difference methods.

• They are very inflexible with respect to geometry - hard to use
in irregular geometries.

• There are methods which gives you a solution which is valid
everywhere within your domain and which handles irregular
geometries elegantly - the finite element method. It is not part
of the curriculum.

How to approximate the derivative numerically

• As seen earlier, we can approximate the derivative as

f ′(xi) =
f (xi + h)− f (xi)

h
+O(h)

This is called a forward difference. It is only first order
accurate.

• A better approximation can be obtained by

f ′(xi) =
f

(
xi + h

2

)
− f

(
xi − h

2

)
h

+O
(
h2

)
.

This has one order higher precision, and the reason for that is
that we choose points symmetrically around xi .

• However, we are going to use these on a grid, and the grid
would not include the point xi + h

2 . Hence we cannot use it to
approximate the first derivative. But with a step size 2h we get

f ′(xi) =
f (xi + h)− f (xi − h)

2h
+O

(
h2

)

How to approximate the derivative numerically

• The formula with step size h is still useful. Consider the grid

h

x̃1 x̃2 x̃3 x̃5x̃4

x1 x2 x3

We get

f ′ (x̃2) =
f (x̃3)− f (x̃1)

h

f ′ (x̃4) =
f (x̃5)− f (x̃3)

h
.

• What happens if we use it to approximate the second
derivative?

f ′′ (x2) =
f ′ (x̃4)− f ′ (x̃2)

h

How to approximate the derivative numerically

• We insert the expressions for the derivative

f ′′ (x2) =

(
f (x̃3)−f (x̃1)

h

)
−

(
f (x̃5)−f (x̃3)

h

)
h

=
f (x̃5) + f (x̃1)− 2f (x̃3)

h2

• But the points x̃1, x̃3 and x̃5 are exactly the points that is part
of our actual grid. This means that we can find our
approximation of the second derivate as

f ′′ (xj) =
f (xj+1) + f (xj−1)− 2f (xj)

h2
.

• Such difference formulas are often represented as stencils.

1 1−2

Example - 1D Poisson

• To see how this works in a real life application, let us consider
the one dimensional Poisson problem

uxx = cos
πx

2
in Ω = (0, 1)

u(0) = 1

u(1) = 0.

• We introduce a grid with step size h = 0.2. This means that
we have six grid points of which two lies on the boundary. We
are given the boundary values hence the two grid points on
the boundaries are not unknowns.

Example - 1D Poisson

• We proceed as previously announced. We replace the
derivatives with numerical approximations and only consider
the equation in the grid points. This yields

x = x1 : u2 + u0 − 2u1 = h2 cos
πh

2

x = x2 : u3 + u1 − 2u2 = h2 cos
π2h

2

x = x2 : u4 + u2 − 2u3 = h2 cos
π3h

2

x = x4 : u5 + u3 − 2u4 = h2 cos
π4h

2

Eksempel - 1D Poisson

• However, we know that u0 = 1 and that u5 = −1 which we
can insert into the equations:

x = x1 : u2 − 2u1 = h2 cos
πh

2
− 1

x = x2 : u3 + u1 − 2u2 = h2 cos
π2h

2

x = x2 : u4 + u2 − 2u3 = h2 cos
π3h

2

x = x3 : u3 − 2u4 = h2 cos
π4h

2
− 0

Example - 1D Poisson

• We can now state this as a matrix-vector system

Au = F
−2 1
1 −2 1

1 −2 1
1 −2




u1

u2

u3

u4

 =


h2 cos πh

2 − u0

h2 cos π2h
2

h2 cos π3h
2

h2 cos π4h
2 − u5


• We note that the matrix A is tridiagonal. The reason for this

is that one equation only couples three unknowns (remember
the stencil).

• This is structure which we can exploit when we want to solve
the system.

The five point formula

• We now consider the operator

∇2 =
∂2

∂x2
+

∂2

∂y2
.

• As previously, we introduce a grid. We use a local numbering
scheme. That is, we use two indices to identify a grid point,

uj
i = u(xi , yj)

To make the notation somewhat easier we will only consider
grids where the step size is the same in both directions,
denoted h.

The five point formula

• We can approximate the partial derivative using the central
difference operator along each direction,

∂2

∂x2
u (xi , yj) ≈

uj
i+1 − 2uj

i + uj
i−1

h2

∂2

∂y2
u (xi , yj) ≈

uj+1
i − 2uj

i + uj−1
i

h2

• We take the sum of these and get the famous five point
formula.

∇2u (xi , yj) ≈
uj
i+1 + uj

i−1 + uj+1
i + uj−1

i − 4uj
i

h2

It is named so since it uses five points to approximate the
solution.

The five point formula

−41

1

1

1

This is the stencil for the five point formula.

Example - 2D Poisson

• We now consider the problem

∇2u = f , in Ω = (0, 1)× (0, 1)

u(x , 0) = g1(x)

u(1, y) = g2(y)

u(x , 1) = g3(x)

u(0, y) = g4(y)

• To make the presentation as easy to follow as possible, we use
a grid with the minimal size needed to illustrate all the
concepts involved. This means that we need five grid points in
each direction which yields a total of 25 nodes of which 9 are
unknowns.

Example - 2D Poisson

i

u1

1
u1

2
u1

3
u1

4

u0

0
u0

1
u0

2
u0

3
u0

4

j

u1

0

We number each node using two indices.

Example - 2D Poisson

• We get three classes of nodes
• Nodes which couple to two boundary values - for instance

node (1, 1).
• Nodes which couple to one boundary value - for instance node

(2, 1).
• Nodes which couple to no boundary values - in this case the

only node of this kind is node (2, 2).

• We know that we end up with a linear system of equations we
need to solve. Thus it is of preference to have a numbering
scheme which corresponds to the vector components - known
as a global numbering scheme.

Example - 2D Poisson

g
3

3

u1 u2 u3

u4 u5 u6

u7 u8 u9

g
0

1
g

1

1
g

2

1
g

3

1
g

4

1

g
1

4

g
2

4

g
3

4

g
4

4

g
1

2

g
2

2

g
3

2

g
1

3
g

2

3

We only number the actual unknowns, successively along rows.

Example - 2D Poisson

• We approximate the solution in node 1:

u2 + g1
4 + u4 + g1

1 − 4u1 = h2f1 ⇒
−4u1 + u2 + u4 = h2f1 − g1

4 − g1
1 couples 3 unknowns

• We approximate the solution in node 2:

u3 + u1 + u5 + g2
1 − 4u2 = h2f2 ⇒

u1 − 4u2 + u3 + u5 = h2f2 − g2
1 couples 4 unknowns

• We approximate the solution in node 5:

u2 + u4 − 4u5 + u6 + u8 = h2f5 couples 5 unknowns

Example - 2D Poisson

• In general this means that
• For the top and bottom row we have two nodes of “type” 1.
• We have a row of “type” 2 first and last because of the top

and bottom boundary.
• For every N − 2 node we have two nodes of “type” 2 due to

the left and right boundary. The exception is the first and last
row since these elements are of “type” 1 there. Here N is the
number of rows in one direction.

• The rest of the nodes will be of “type” 3.

Example - 2D Poisson



-4 1 1
1 -4 1 1

1 -4 1

1 -4 1 1
1 1 -4 1 1

1 1 -4 1

1 -4 1
1 1 -4 1

1 1 -4





u1

u2

u3

u4

u5

u6

u7

u8

u9


=



h2f1 − g1
4 − g1

1

h2f2 − g2
1

h2f3 − g3
1 − g1

2

h2f4 − g2
2

h2f5
h2f6 − g2

2

h2f7 − g3
4 − g1

3

h2f8 − g2
3

h2f9 − g3
2 − g3

3



Example - 2D Poisson

• Hopefully you are able to see the general system with more
nodes.

• The matrix becomes sparse. General form

xx
x

x
x

x
x

x
x

x
x

x

x

x x

x x
x x

x x
x x

x x
x x

x x
x x

x x

xx

x
x

x
x

x
x

x
x

x
x

x

Simplified Gauss-Seidel iterations - exploiting the structure

• As previously stated, Gauss-Seidel iterations can be stated on
component form as

xk+1
j =

1

ajj

b −
j−1∑
i=1

ajix
k+1
i −

n∑
i=j+1

ajix
k
i

 .

• For our particular matrix, almost all the elements aij are zero.
This we can exploit. For instance for node 5 we have that

uk+1
5 =

1

−4

(
h2f5 − uk+1

2 − uk+1
4 − uk

6 − uk
8

)
• There are no summations since we have control over the

structure of the matrix.

• This formula exploits the sparseness of the matrix.

Simplified Gauss-Seidel iterations - exploiting the structure

• If we additionally use a sparse format for storing the matrix
A , we reduce the memory usage severely.

Format N = 1000 N = 100000

nonspare 8Mb 80Gb
sparse 60Kb 6Mb

• This is important to keep in mind when applying difference
methods - the resulting operators are almost exclusively
sparse.

1D Heat equation

• We now consider a parabolic equation, the heat equation

ut = uxx , i Ω = (0, 1)

u(t0) = u0(x)

u(0, t) = g0(t)

u(1, t) = g1(t)

This is a boundary-initial value problem.
• The equation smooth the initial data

L

• You can think of the problem as heat conduction in a 1D rod
with a given temperature on the boundaries (end points).

1D heat equation - solution strategy

• We semidiscretize the equation. This means that the equation
is discrete in some variables and continous in one or several
others. Here we discretize in space and keep the equation
continous in time.

• This means that we have to introduce a spatial grid - since
this is in one space dimension this is simply cutting up the axis
into intervals. We use the symbol h to denote spatial step size.

1D heat equation

• As usual we introduce a vector of unknowns, and we find that
our semi-discrete system of equations can be stated on the
form

du

dt
=

1

h2
Au

ui (0) = u0(xi) ∀ i = 1, · · · ,N − 1

u0(t) = g0(t)

uN(t) = g1(t)

• This is exactly the format we had for the systems of ordinary
differential equations we studied earlier - we can apply
methods for solving systems of ODEs.

1D heat equation - Euler’s method

• We denote the temporal step size by k.

• Euler’s method can be written as

u n+1 = u n + kf (tn, u n) = u n +
k

h2
Au n ⇒

u n+1 − u n

k
=

1

h2
Au n.

• We introduce

r =
k

h2

which let us state the method on component form as

un+1
i = (1− 2r)un

i + r
(
un
i−1 + un

i+1

)
.

1D heat equation - Euler’s method

• The stencil for this method is

ui−1,j ui,j ui+1,j

ui,j+1

1− 2r

r r

1

• Euler’s method for the heat equation is thus composed of
• central difference in space
• Euler’s method in time.

1D heat equation - Euler’s method - stability

• Do you recall the stability analysis we performed for Euler’s
method? We obtained the stability condition

|1 + λk| < 1.

• Using diagonalization we showed that this translates to a
condition on the eigenvalues for systems of equations. We
considered systems on the form

du

dt
= Au

which is exactly what we have here.
• It can be shown that for our matrix A we have that

λmax (A) ∼ O (1)

which means that the total operator has

λmax ∼
1

h2
.

1D heat equation - Euler’s method - stability

• This can be used to show that for this particular equation we
get the stability condition

r ≤ 1

2
.

• This is a rather strict condition - if we half the step size in
space we have to reduce the temporal step size by a factor of
4 to keep the solution stable!

• This turns out to be a catastrophy when applying this method
in real life - consider the case where the materials involved are
very slow conducting.

• The reason for this condition is the explicit temporal
integration. We know what the cure is: Apply an implicit
temporal integration instead.

1D heat equation - Crank Nicolson’s method

• We here replace the temporal integration with an implicit
method - namely the trapezoidal rule:

u n+1 = u n +
k

2

(
f (tn, u n) + f

(
tn+1, u n+1

))
= u n +

k

2h2
A

(
u n + u n+1

)
⇒(

I − r

2
A

)
u n+1 =

(
I +

r

2
A

)
u n

• On component form this can be stated as

(2 + 2r) un+1
i −r

(
un+1
i+1 + un+1

i−1

)
= (2 + 2r) un

i −r
(
un
i+1 + un

i−1

)

1D heat equation - Crank Nicolson’s method

• This method has the stencil

ui−1,j ui,j ui+1,j

ui,j+1

2− 2r

ui−1,j+1 ui+1,j+1

r r

−r −r2 + 2r

• This means that Crank-Nicolson’s method for the heat
equation consists of

• central difference in space
• the trapezoidal rule in time.

1D heat equation - Crank Nicolson’s method - linear
system

• We now assume that r = 1 to simplify the equations
somewhat.

• We introduce a grid with 5 spatial grid points of which 3 are
unknowns.

• We then state the equations in the three unknown grid points:

i = 1 : 4un+1
1 − un+1

2 − un+1
0 = un

2 + un
0

i = 2 : 4un+1
2 − un+1

3 − un+1
1 = un

3 + un
1

i = 3 : 4un+1
3 − un+1

4 − un+1
2 = un

4 + un
2

• Due to the given boundary values we have that

un
0 = g0(kn)

un
4 = g1(kn).

1D heat equation - Crank Nicolson’s method - linear
system

• Hence we obtain a linear system on the form 4 −1
−1 4 −1

−1 4

un+1
1

un+1
2

un+1
3

 =

un
2 + g0(nk)
un
3 + un

1

g1(nk) + un
2


• For an arbitrary N this yields a tridiagonal matrix

4 −1
−1 4 −1

. . .
. . .

. . .
. . .

. . . −1
−1 4



1D heat equation - Crank Nicolson’s method - linear
system

• These are known as Toeplitz-matrices.

• The fastest method to solve these systems of equations are a
LU -factorization where we take the tridiagonal structure into
consideration.

• Final comment: I again stress the fact that since we have
employed an implicit temporal integration method we have no
stability condition on the value of r , which means that we can
choose step sizes based solely on accuracy considerations.

