LØSNINGSFORSLAG EKSAMEN TMA4130 MATEMATIKK 4N, 30.11.2005

Løsning av oppgave 1

Setter vi $Y = L(y)$ og transformerer, får vi ligningen

$$sY - 1 + Y + \frac{Y}{s-1} = \frac{e^{-s}}{s}$$

Med litt regning gir dette

$$Y(s) = \frac{1}{s} - \frac{1}{s^2} + e^{-s} \left(\frac{1}{s^2} - \frac{1}{s^3} \right)$$

Ved å transformere tilbake får vi ved hjelp av 2. forskyvningsteorem at

$$y(t) = 1 - t - \frac{1}{2} u(t-1) \left(t^2 - 4t + 3 \right).$$

Løsning av oppgave 2

La S_1 og S_2 betegne summene av de gitte rekken, henholdsvis.

Fra konvergensteoremet for Fourierrekker har vi (siden f er kontinuerlig overalt)

$$x^4 = \frac{\pi^4}{5} + \sum_{n=1}^{\infty} \frac{8(-1)^n(\pi^2n^2 - 6)}{n^4} \cos nx \quad \text{for} \quad -\pi \leq x \leq \pi.$$

Sett $x = \pi$ og bruk at $\cos n\pi = (-1)^n$. Det gir

$$\pi^4 = \frac{\pi^4}{5} + \sum_{n=1}^{\infty} \frac{8(\pi^2n^2 - 6)}{n^4} = \frac{\pi^4}{5} + 8S_1 \implies S_1 = \frac{1 - 1/5}{8} \pi^4 = \frac{\pi^4}{10}.$$

Parsevals identitet

$$2a_0^2 + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 \, dx$$

gir i vårt tilfelle

$$2 \left(\frac{\pi^4}{5} \right)^2 + \sum_{n=1}^{\infty} \left(\frac{8(-1)^n(\pi^2n^2 - 6)}{n^4} \right)^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^8 \, dx$$

dvs.

$$\frac{2\pi^8}{25} + 64S_2 = \frac{2\pi^8}{9} \implies S_2 = \frac{2\pi^8}{64} \left(\frac{1}{9} - \frac{1}{25} \right) = \frac{\pi^8}{450}.$$
Løsning av oppgave 3

Punkt (a)

Ligningen gir

\[F(x)[G''(t) + G'(t)] = F''(x)G(t) \implies \frac{G''(t) + G'(t)}{G(t)} = \frac{F''(x)}{F(x)} = k \]

der \(k \) må være konstant. Følgelig har vi

1. \(F''(x) = kF(x), \) \(\quad (1) \)
2. \(G''(t) + G'(t) = kG(t). \) \(\quad (2) \)

Randbetingelsen gir

3. \(F(0) = F(\pi) = 0. \) \(\quad (3) \)

Vi løser først randverdiproblemet (1), (3). Det er tre muligheter:

1. \(k > 0. \) Da skriver vi \(k = \mu^2 \) der \(\mu > 0. \) Generell løsning blir da \(F(x) = A e^{\mu x} + Be^{-\mu x}, \) men (3) gir \(A = B = 0, \) så vi kan se bort fra \(k > 0. \)

2. \(k = 0. \) Gir generell løsning \(F(x) = Ax + B, \) men (3) gir \(A = B = 0, \) så vi kan se bort fra \(k = 0. \)

3. \(k < 0. \) Da skriver vi \(k = -\mu^2 \) der \(\mu > 0. \) Generell løsning blir da \(F(x) = A \cos \mu x + B \sin \mu x, \) men (3) gir \(A = 0 \) og \(B \sin \mu \pi = 0. \) Derfor må \(\mu = n, \) der \(n = 1, 2, 3, \ldots \)

Vi konkluderer at \(F(x) = F_n(x) = B_n \sin nx, \) svarende til \(k = -n^2, \) for \(n = 1, 2, 3, \ldots \) Nå løser vi (2) med \(k = -n^2, \) dvs.

\[G''(t) + G'(t) + n^2G(t) = 0 \]

Kar. lign. er \[\lambda^2 + \lambda + n^2 = (\lambda + \frac{1}{2})^2 + n^2 - \frac{1}{4} = 0, \] som har røtter

\[\lambda = -\frac{1}{2} \pm i \sqrt{n^2 - \frac{1}{4}}. \]

Derfor er

\[G(t) = G_n(t) = e^{-t/2} \left(C_n \cos t \sqrt{n^2 - \frac{1}{4}} + D_n \sin t \sqrt{n^2 - \frac{1}{4}} \right) \]

og vi konkluderer:

\[u_n(x, t) = F_n(x)G_n(t) = e^{-t/2} \left(C_n \cos t \sqrt{n^2 - \frac{1}{4}} + D_n \sin t \sqrt{n^2 - \frac{1}{4}} \right) B_n \sin nx \]

men vi kan sette \(B_n = 1 \) (vi har allerede to vilkårlige konstanter \(C_n \) og \(D_n, \) så \(B_n \) kan ”bakes inn” der).

Punkt (b)

Her er det bare \(u(x, t) = u_4(x, t) \) som kan komme i betraktning. Vi har fra svaret på forrige punkt (med \(B_n = 1), \)

\[u(x, 0) = C_4 \sin 4x \implies C_4 = 0. \]

fra initialbet.
Vi står derfor igjen med

\[u(x, t) = e^{-t/2} D_4 \sin \frac{t \sqrt{63}}{2} \sin 4x \]

Men da er

\[u_t(x, t) = -\frac{1}{2} e^{-t/2} D_4 \sin \frac{t \sqrt{63}}{2} \sin 4x + e^{-t/2} D_4 \frac{\sqrt{63}}{2} \cos \frac{t \sqrt{63}}{2} \sin 4x \]

og innsatt \(t = 0 \):

\[u_t(x, 0) = D_4 \frac{\sqrt{63}}{2} \sin 4x = \sin 4x \quad \Rightarrow \quad D_4 = \frac{2}{\sqrt{63}} \]

Svaret altså

\[u(x, t) = e^{-t/2} \frac{2}{\sqrt{63}} \sin \frac{t \sqrt{63}}{2} \sin 4x. \]

Her et plot av løsningen:
Løsning av oppgave 4

Vi har (se s. 176 i Rottmann for def.)

\[
\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-|x|} e^{-iwx} \, dx
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-|x|} \cos wx \, dx - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-|x|} \sin wx \, dx
\]

\[
= 0 \text{ pga. odd fungjon i } x
\]

\[
= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-|x|} \cos wx \, dx \quad \text{(integranten er like fungjon av } x)\]

\[
= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x} \cos wx \, dx
\]

\[
= \sqrt{\frac{2}{\pi}} \left[\frac{e^{-x}}{1 + w^2} (-\cos wx + w \sin wx) \right]_{x=0}^{x=\infty} \quad \text{(Rottmann s. 144, nr. 133)}.
\]

Men \(x = \infty \) gir ikke noe bidrag, siden \(\lim_{x \to \infty} e^{-x} \cos wx = \lim_{x \to \infty} e^{-x} \sin wx = 0 \). Får derfor

\[
\hat{f}(w) = \sqrt{\frac{2}{\pi}} \cdot \frac{1}{1 + w^2}.
\]

Fra inversjonsformelen har vi

\[
f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{iwx} \, dw
\]

dvs.

\[
e^{-|x|} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{iwx}}{1 + w^2} \, dw
\]

\[
= \frac{1}{\pi} \int_{-\infty}^{\infty} \cos wx \, dw + \frac{i}{\pi} \int_{-\infty}^{\infty} \sin wx \, dw
\]

\[
= 0 \text{ pga. odd fungjon av } w
\]

\[
= \frac{2}{\pi} \int_{0}^{\infty} \cos wx \, dw \quad \text{(integranten er like fungjon av } w)\]

og ved å sette \(x = 1 \) får vi da:

\[
\int_{0}^{\infty} \frac{\cos wx}{1 + w^2} \, dw = \frac{\pi}{2e}
\]

som skulle vises.
Løsning av oppgave 5

Vi bruker tilnærmelsene

\[u_{xx}(i \cdot h, j \cdot h) \approx \frac{1}{h^2}(u_{i-1,j} - 2u_{i,j} + u_{i+1,j}) \]

og

\[u_{yy}(i \cdot h, j \cdot h) \approx \frac{1}{h^2}(u_{i,j-1} - 2u_{i,j} + u_{i,j+1}) \]

Dette gir ligningene

\[\frac{1}{h^2}(1 - 2u_{11} + u_{21}) + \frac{1}{h^2}(1 - 2u_{11} + u_{12}) = -1 \]

\[\frac{1}{h^2}(u_{11} - 2u_{21} + 1) + \frac{1}{h^2}(1 - 2u_{21} + 1) = -1 \]

\[\frac{1}{h^2}(1 - 2u_{12} + 1) + \frac{1}{h^2}(u_{11} - 2u_{12} + 1) = -1 \]

Setter inn \(h = 1/4 \) og får ligningene

\[-4u_{11} + u_{21} + u_{12} = -33/16 = -2.0625 \]
\[u_{11} - 4u_{21} = -49/16 = -3.0625 \]
\[u_{11} - 4u_{12} = -49/16 = -3.0625 \]

Disse har løsningene

\[u_{11} = 115/112 = 1.0268, u_{12} = u_{21} = 229/224 = 1.0223 \]

Løsning av oppgave 6

Systemet kan ikke løses ved hjelp av Jacobi-iterasjoner slik det står, siden koeffisienten \(a_{33} = 0 \).

Men ved å sette den siste ligningen først får vi:

\[\begin{align*}
4x_1 - x_2 & = 2 \\
4x_1 - 16x_2 + 4x_3 & = 2 \\
-x_2 + 4x_3 & = 4
\end{align*} \]

Ikke bare kan Jacobi-iterasjonene utføres, men dette systemet er også diagonal-dominant, og vi kan være sikre på at iterasjonene konvergerer.

En iterasjon gir:

\[x_1^{(1)} = \frac{1}{4} \left(2 + x_2^{(0)} \right) = \frac{3}{4} = 0.750 \]
\[x_2^{(1)} = -\frac{1}{16} \left(2 - 4x_1^{(0)} - 4x_3^{(0)} \right) = \frac{3}{8} = 0.375 \]
\[x_3^{(1)} = \frac{1}{4} \left(4 + x_1^{(0)} \right) = \frac{5}{4} = 1.250. \]
Løsning av oppgave 7

Ved å sette \(y_1 = y \) og \(y_2 = y' \) får vi systemet:

\[
\begin{align*}
y_1' &= y_2 \\
y_2' &= -(2y_1 + y_1^3 + 0.5y_2).
\end{align*}
\]

Når dette skal løses med Heuns metode, lønner det seg å skrive systemet på vektorform. Med \(y_1(0) = y(0) = 1 \) og \(y_2(0) = y'(0) = 0 \) blir det

\[
y' = f(y) = \begin{bmatrix} y_2 \\ -(2y_1 + y_1^3 + 0.5y_2) \end{bmatrix}, \quad y_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]

Første skritt med Heuns metode med \(h = 0.1 \)

\[
k_1 = hf(y_0) = 0.1 \begin{bmatrix} 0 \\ -(2 \cdot 1 + 1^3 + 0.5 \cdot 0) \end{bmatrix} = \begin{bmatrix} 0.0 \\ -0.3 \end{bmatrix}
\]

\[
y_0 + k_1 = \begin{bmatrix} 1.0 \\ -0.3 \end{bmatrix}
\]

\[
k_2 = hf(y_0 + k_1) = 0.1 \begin{bmatrix} -0.3 \\ -(2 \cdot 1 + 1^3 + 0.5 \cdot (-0.3)) \end{bmatrix} = \begin{bmatrix} -0.03 \\ -0.285 \end{bmatrix}
\]

og til slutt

\[
y_1 = y_0 + \frac{1}{2}(k_1 + k_2) = \begin{bmatrix} 0.9850 \\ -0.2925 \end{bmatrix}
\]

Andre skritt:

\[
k_1 = hf(y_1) = 0.1 \begin{bmatrix} -0.2925 \\ -(2 \cdot 0.9850 + 0.9850^3 + 0.5 \cdot (-0.2925)) \end{bmatrix} = \begin{bmatrix} -0.0293 \\ -0.2779 \end{bmatrix}
\]

\[
y_1 + k_1 = \begin{bmatrix} 0.9558 \\ -0.5704 \end{bmatrix}
\]

\[
k_2 = hf(y_1 + k_1) = 0.1 \begin{bmatrix} -0.5794 \\ -(2 \cdot 0.9558 + 0.9558^3 + 0.5 \cdot (-0.5704)) \end{bmatrix} = \begin{bmatrix} -0.0570 \\ -0.2499 \end{bmatrix}
\]

og til slutt

\[
y_2 = y_1 + \frac{1}{2}(k_1 + k_2) = \begin{bmatrix} 0.9419 \\ -0.5564 \end{bmatrix}
\]

Så \(y(0.1) \approx 0.9850 \) og \(y(0.2) \approx 0.9419 \).