Exercise \#10

26. October 2022

Problem 1.

Compute the Laplace transform of the following functions.
a) $f(t)=5+t^{3}-4 t^{6}$.
b) $f(t)=t e^{2 t}$.
c) $f(t)=e^{-t} \cos (5 t)$.

Problem 2.

Find the inverse Laplace transform of the following functions.
a) $F(s)=-\frac{4}{s^{2}}+\frac{3}{s^{5}}$.
b) $F(s)=\frac{s+13}{s^{2}-6 s+6}$.
c) $F(s)=\frac{2}{(s-1)\left(s^{2}+1\right)}$.

Problem 3.

Decide for each of the following statements whether it is true or false. Explain your answer.
a) If f and g are two functions for which the Laplace transform exists, then $\mathcal{L}(f-g)=$ $\mathcal{L}(f)-\mathcal{L}(g)$.
b) If f and g are two functions, for which the Laplace transform exists, then $\mathcal{L}(f \cdot g)=$ $\mathcal{L}(f) \cdot \mathcal{L}(g)$.
c) If the function f satisfies $0 \leq f(t)$ for all $t \geq 0$, then $\mathcal{L}(f)(s) \geq 0$ for all s for which $\mathcal{L}(f)(s)$ exists.
d) If the function f is continuous and satisfies $0 \leq f(t) \leq 1$ for all $t \geq 0$, then $\mathcal{L}(f)(s)$ exists for all $s>0$.

Problem 4.

Use the Laplace transform in order to solve the following initial value problems:
a) $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=1, y^{\prime}(0)=1$.
b) $y^{\prime \prime \prime}+y^{\prime}=1, y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=-1$.
c) $y^{\prime \prime}+5 y^{\prime}+6 y=0, y(0)=-2, y^{\prime}(0)=1$.

The next exercises are optional and should not be handed in!

Problem 5.

Compute the Laplace transform of the following functions:
a) $f(t)=\sin (4 t) e^{3 t}$.
b) $f(t)=\sinh (t) \cos (t)$.

Problem 6.

Compute the inverse Laplace transform of $F(s)$, where
a) $F(s)=\frac{1}{s^{2}+s+1}$,
b) $F(s)=\frac{a s}{s^{2}-2 a s+a^{2}+1}$ for some $a \in \mathbb{R}$,
c) $F(s)=\frac{1}{s^{3}+s}$.

Problem 7.

a) Use the Laplace transform to solve the differential equation,

$$
y^{\prime}=-2 y+1, \quad y(0)=0 .
$$

b) Use the Laplace transform to solve the differential equation,

$$
y^{\prime \prime \prime}=-y^{\prime}+2, \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0 .
$$

