## Exercise \#6

## 26. September 2022

## Problem 1.

Find the Fourier transform of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ :
a) The function

$$
f(x)=\mathrm{e}^{-|x|}
$$

b) The function

$$
f(x)=x^{2} \mathrm{e}^{-x^{2}} .
$$

Hint: Differentiate $\mathrm{e}^{-x^{2}}$ twice, and use the table in Kreyszig, p. 536.

## Problem 2.

Define the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f(x):=e^{-x^{2}} \quad \text { and } \quad g(x):=e^{-2 x^{2}} .
$$

Use the Fourier transform in order to compute the convolution $f * g$.
You may (and should) use the table in Kreyszig, p. 536, for the computation of the Fourier transform of $e^{-a x^{2}}$.

## Problem 3.

Define the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f(x):=\left\{\begin{array}{ll}
1 & \text { if } 0<x<1, \\
0 & \text { else },
\end{array} \quad \text { and } \quad g(x):= \begin{cases}x & \text { if } 0<x \leq 1 \\
2-x & \text { if } 1<x<2, \\
0 & \text { else }\end{cases}\right.
$$

a) Use the definition of convolution in order to show that $f * f=g$.
b) Compute the Fourier transform of $f$.
c) Compute the Fourier transform of $g$.

## Problem 4.

a) Compute explicitly the Fourier matrices $\mathcal{F}_{2}, \mathcal{F}_{3}$, and $\mathcal{F}_{4}$.
b) Compute by hand the discrete Fourier transform of the vector $f=(1,2,3,1)$.
c) Assume that the discrete Fourier transform of the vector $f \in \mathbb{R}^{11}$ is given as

$$
\hat{f}=(0,0,1,0,0,0,0,0,0,1,0)
$$

Express the entries $f_{n}$ of $f$ in terms of sine and cosine functions.

## The next exercises are optional and should not be handed in!

## Problem 5.

Compute the convolution $f * f$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is the function

$$
f(x)=\operatorname{sinc}(x):= \begin{cases}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Hint: Use the Fourier transform!

## Problem 6.

Compute the Fourier transform of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ :
a) The function

$$
f(x)=x e^{-|x|}
$$

b) The function

$$
f(x)= \begin{cases}\sin (x) & \text { if } 0<x<\pi \\ 0 & \text { else }\end{cases}
$$

Problem 7. (See Problem 7 in the exam from spring 2022)
a) Compute by hand the discrete Fourier transform of the vector $f=(1 / 2,1,1 / 2,0)$.
b) Let $c \in \mathbb{R}$ be given, and assume that, for some signal $g \in \mathbb{R}^{4}$ we obtain $\hat{g}=(0, c, 0, c)$. What is the simplest function $g(x)$ that could have been sampled?
c) Is the inverse Fourier transform $h=\mathcal{F}_{8}^{-1} \hat{h}$ of the vector $\hat{h}=(0,0,0,0,0,0,1,0)$ realvalued?

