
Lecture notes for TMA4130/35 Mathematics 4N/D

Numerical Solution of Nonlinear Equations

Anne Kværnø, Markus Grasmair, and Douglas R.Q. Pacheco

Sep 12, 2022

Corresponding Python code: nonlinearequations.py.

If you want to have a nicer theme for your jupyter notebook, download the cascade stylesheet file
tma4320.css and execute the next cell:

1 Introduction
We know that the quadratic equation of the form

ax2 + bx+ cx = 0

has the roots
r± = −b±

√
b2 − 4ac

2a .

More generally, for a given function f , a number r satisfying f(r) = 0 is called a root (or solution) to the
equation

f(x) != 0.

In many applications, we encounter such equations for which we do not have a simple solution formula as
for quadratic functions. In fact, an analytical solution formula might not even exist! Thus the goal of the
chapter is to develop some numerical techniques for solving nonlinear scalar equations (one equation, one
unknown), such as, for example

x3 + x2 − 3x = 3.

or systems of equations, such as, for example

xey = 1,
−x2 + y = 1.

NB!

• Refer to section 3.1 in Preliminaries for some general comments on convergence.

• There are no examples of numerical calculations done by hand in this note. If you would like some,
you can easily generate them yourself. Take one of the computer exercises, do your calculations by
hand, if needed modify the code so that you get the output you want, run the code, and compare
with the results you got by your pencil and paper calculation.

https://www.math.ntnu.no/emner/TMA4320/2022v/notebooks/tma4320.css
https://www.math.ntnu.no/emner/TMA4320/2022v/notebooks/tma4320.css

2 Scalar equations
In this section we discuss the solution of scalar equations. The techniques we will use are known from
previous courses. When they are repeated here, it is because the techniques used to develop and analyse
these methods can, at least in principle be extended to systems of equations. We will also emphasise the
error analysis of the methods.

A scalar equation is given by

f(x) = 0, (1)

where f ∈ C[a, b] for some interval [a, b]. A solution r of the equation is called a zero or a root of f . A
nonlinear equation may have one, more than one or no roots.

Example 1: Given the function f(x) = x3 + x2 − 3x− 3 on the interval [−2, 2]. Plot the function on
the interval, and locate possible roots.

See the function example1() in nonlinearequations.py.

According to the plot, the function f has three real roots in the interval [−2, 2].

The function can be rewritten as

f(x) = x3 + x2 − 3x− 3 = (x+ 1)(x2 − 3).

Thus the roots of f are −1 and ±
√

3. We will use this example as a test problem later on.

2.1 Existence and uniqueness of solutions
The following theorem is well known:

Theorem 1: Existence and uniqueness of a solution.

• If f ∈ C[a, b] with f(a) and f(b) of opposite sign, there exist at least one r ∈ (a, b) such that
f(r) = 0.

• The solution is unique if f ∈ C1[a, b] and f ′(x) > 0 or f ′(x) < 0 for all x ∈ (a, b).

The first condition guarantees that the graph of f will pass the x-axis at some point r, the second
guarantees that the function is either strictly increasing or strictly decreasing.

We note that the condition that f(a) and f(b) are of opposite sign can be summarised in the condition
that f(a) · f(b) < 0.

2

3 Bisection method
The first part of the theorem can be used to construct the first, quite intuitive algorithm for solving scalar
equations. Given an interval, check if f has a root in the interval by comparing the signs of the function
values at the end-points, divide it in two, check in which of the two halfs the root is, and continue until a
root is located with sufficient accuracy.

Bisection method.

• Given the function f and the interval I0 := [a, b], such that f(a) · f(b) < 0.

• Set a0 = a, b0 = b.

• For k = 0, 1, 2, 3, . . .

ck = ak + bk
2

Ik+1 := [ak+1, bk+1] =
{

[ak, ck] if f(ak) · f(ck) 6 0
[ck, bk] if f(bk) · f(ck) 6 0

Use ck as the approximation to the root. Since ck is the midpoint of the interval [ak, bk], the error satisfies
|ck − r| 6 (bk − ak)/2. The loop is terminated when (bk − ak)/2 is smaller than some user specified
tolerance. Since the length of interval Ik satisfies (bk − ak) = 2−k(b− a), we also have an a priori estimate
of the error after k bisections,

|ck − r| 6
1
2(bk − ak) 6 1

2k+1 (b− a)

Consequently, we can estimate how many bisections we have to perform to compute a root up to a given
tolerance tol by simply requiring that

1
2k+1 (b− a) 6 tol⇔ b− a

2 tol
6 2k ⇔

log
(b− a

2 tol

)
log 2 6 k.

We will of course also terminate the loop if f(ck) is very close to 0.

3.1 Implementation
The algorithm is implemented in the function bisection(). See the function bisection() in nonlinearequations.py.

Example 2: Use the code above to find the root of

f(x) = x3 + x2 − 3x− 3

in the interval [1.5, 2]. Use 10−6 as the tolerance.

See the function example2 in nonlinearequations.py.

Control that the numerical result is within the error tolerance:

3.2 Exercises:
1. Choose some appropriate intervals and find the two other roots of f .

2. Compute the solution(s) of x2 + sin(x)− 0.5 = 0 by the bisection method.

3. Given a root in the interval [1.5, 2]. How many iterations are required to guarantee that the error is
less than 10−4.

3

4 Fixed point iterations
The bisection method is very robust, but not particular fast. We will now discuss a major class of iteration
schemes, e.g. the so-called fixed point iterations. The idea is:

• Given a scalar equation f(x) = 0 with a root r.

• Rewrite the equation in the fixed point form x = g(x) such that the root r of f is a fixed point of g,
that is, r satisfies r = g(r).

The fixed point iterations are then given by

Fixed point iterations.

• Given g and a starting value x0.

• For k = 0, 1, 2, 3, . . .

xk+1 = g(xk)

4.1 Implementation
The fixed point scheme is implemented in the function fixedpoint. The iterations are terminated when
either the error estimate |xk+1− xk| is less than a given tolerance tol, or the number of iterations reaches
some maximum number max_iter.

See the function fixpoint in nonlinearequations.py.

Example 3: The equation

x3 + x2 − 3x− 3 = 0 can be rewritten as x = x3 + x2 − 3
3 .

The fixed points are the intersections of the two graphs y = x and y = x3+x2−3
3 , as can be demonstrated

by the following script:

See the function example3 in nonlinearequations.py. We observe that the fixed points of g are the
same as the zeros of f .

Apply fixed point iterations on g(x). Aim for the fixed point between 1 and 2, so choose x0 = 1.5. Do the it-
erations converge to the root r =

√
3? See the function example3_iter in nonlinearequations.py.

4.2 Exercises:
Repeat the experiment with the following reformulations of f(x) = 0:

x = g2(x) = −x
2 + 3x+ 3
x2 ,

x = g3(x) = 3
√

3 + 3x− x2,

x = g4(x) =
√

3 + 3x− x2

x

Use x0 = 1.5 in your experiments, you may well experiment with other values as well.

4.3 Theory
Let us first state some existence and uniqueness results. Apply Theorem 1 in this note on the equation
f(x) = x− g(x) = 0. The following is then given (the details are left to the reader):

4

Corollary 1: Existence and uniqueness of a solution.

• If g ∈ C[a, b] and a < g(x) < b for all x ∈ [a, b] then g has at least one fixed point r ∈ (a, b).

• If in addition g ∈ C1[a, b] and |g′(x)| < 1 for all x ∈ [a, b] then the fixed point is unique.

In the following, we will write the assumption a < g(x) < b for all x ∈ [a, b] as g([a, b]) ⊂ (a, b).

In this section we will discuss the convergence properties of the fixed point iterations, under the conditions
for existence and uniqueness given above.

The error after k iterations are given by ek = r − xk. The iterations converge when ek → 0 as k →∞.
Under which conditions is this the case?

This is the trick: For some arbitrary k we have

xk+1 = g(xk), the iterations
r = g(r). the fixed point

Take the difference between those and use the Mean Value Theorem (see Preliminaries), and finally take
the absolute value of each expression in the sequence of equalities:

|ek+1| = |r − xk+1| = |g(r)− g(xk)| = |g′(ξk)| · |r − xk| = |g′(ξk)| · |ek|. (2)

Here ξk is some unknown value between xk (known) and r (unknown). We can now use the assumptions
from the existence and uniqueness result.

• The condition g([a, b]) ⊂ (a, b) guarantees that if x0 ∈ [a, b] then xk ∈ (a, b) for k = 1, 2, 3,

• The condition |g′(x)| 6 L < 1 guarantees convergence towards the unique fixed point r, since

|ek+1| 6 L |ek| ⇒ |ek| 6 Lk |e0| → 0 as k →∞,

and Lk → 0 as k →∞ when L < 1.

In addition, we have that

|xk+1 − xk| = |g(xk)− g(xk−1)| = |g′(ξk)| · |xk − xk−1|

for some ξk between xk−1 and xk, which shows that

|xk+1 − xk| ≤ L|xk − xk−1|.

Repeating this argumentation k-times yields the estimate

|xk+1 − xk| ≤ Lk|x1 − x0|.

As a consequence, since r = limk→∞ xk, we obtain that

|x1 − r| =
∣∣∣ ∞∑
k=0

(xk+1 − xk+2)
∣∣∣ ≤ ∞∑

k=0
|xk+1 − xk+2| ≤

∞∑
k=0

Lk+1|x1 − x0| =
L

1− L |x1 − x0|.

A similar argumentation (but now starting at xk instead of x1) yields that

|xk+1 − r| ≤
L

1− L |xk+1 − xk| ≤
Lk+1

1− L |x1 − x0|.

In summary we have:

5

The fixed point theorem.

If there is an interval [a, b] such that g ∈ C1[a, b], g([a, b]) ⊂ (a, b) and there exist a positive constant
L < 1 such that |g′(x)| 6 L < 1 for all x ∈ [a, b] then

• g has a unique fixed point r in (a, b).

• The fixed point iterations xk+1 = g(xk) converges towards r for all starting values x0 ∈ [a, b].

• The error ek+1 = r − xk+1 after iteration k + 1 satisfies:

|ek+1| 6 L|ek| . . . error reduction rate,

|ek+1| 6
Lk+1

1− L |x1 − x0| . . . a-priori error estimate.

|ek+1| 6
L

1− L |xk+1 − xk| . . . a-posteriori error estimate.

From the discussion above, we can draw some conclusions:

• The smaller the constant L, the faster the convergence.

• If |g′(r)| < 1 then there will always be an interval (r − δ, r + δ) around r for some δ > 0 on which
all the conditions are satisfied. Meaning that the iterations will always converge if x0 is sufficiently
close to r.

• If |g′(r)| > 1, a similar argumentation shows that the fixed point iterates move away from the point
r. In practice, this means that the fixed point iteration in this case will never converge towards r.

• If the constant L is known, the a-priori error estimate can be used to estimate the number of steps
k̂ required to have the error ek+1 below a specified tolerance tol. To that end, we have to solve the
equation

Lk̂+1

1− L |x1 − x0|︸ ︷︷ ︸
Ek+1

= tol

to find k̂. Since the true error ek+1 is actually at most equal Ek+1 (but usually smaller), we know
that any k ≤ k̂ will be sufficient to guarantee ek+1 < tol. Mind that if k̂ is not an integer, it should
be rounded up to the closest natural number, since we cannot perform a “fraction” of an iteration.

• The a-posteriori estimate can be used to estimate the actual error based on the size of the last
update |xk+1 − xk|.

• If the constant L is not known, one can estimate it using the ideas found in preliminaries.ipynb.
Then one can use this estimate of L in the a-posteriori error estimate in order to estimate the actual
error.

Example 3 revisited: Use the theory above to analyse the scheme from Example 3, where

g(x) = x3 + x2 − 3
3 , g′(x) = 3x2 + 2x

3 .

It is clear that g is differentiable. We already know that g has three fixed points, r = ±
√

3 and r = −1.
For the first two, we have that g′(

√
3) = 3 + 2

3
√

3 = 4.15 and g′(−
√

3) = 3 − 2
3
√

3 = 1.85, so the fixed
point iterations will never converge towards those roots. But g′(−1) = 1/3, so we get convergence towards
this root, given sufficiently good starting values. The figure below demonstrates that the assumptions of
the theorem are satisfied in some region around x = −1, for example [−1.2,−0.8].

Let us take, for example, the initial guess x0 = −0.9, from which we want to find an upper bound for the
number of iterations k̂ needed to meet a tolerance of 10−3. You can verify that the maximum value of

6

|g′(x)| for x ∈ [−1.2,−0.8] is 0.96, so we can use L = 0.96 in the error estimate. The equation to solve
is

0.96k̂+1

1− 0.96 |g(−0.9)− (−0.9)| = 10−3 ,

which gives us

0.96k̂+1 = 0.04× 10−3

| − 0.073| ≈ 5.48× 10−4 ⇒ k̂ ≈ log(5.48× 10−4)
log(0.96) − 1 ≈ 182.95 ,

that is, we will need at most 183 iterations (but probably fewer). We get such a large estimate because
our L is quite close to 1. Ideally, we would like to have |g′(x)| (and hence L) as low as possible, so that
few iterations are required.

See example3_revisited in nonlinearequations.py.

The plot to the left demonstrates the assumption g([a, b]) ⊂ (a, b), as the graph y = g(x) enters at the left
boundary and exits at the right and does not leave the region [a, b] anywhere in between. The plot to the
right shows that |g′(x)| 6 |g′(a)| = L < 1 is satisfied in the interval.

4.4 Exercises:
1. See how far the interval [a, b] can be stretched, still with convergence guaranteed.

2. Do a similar analysis on the three other iteration schemes suggested above, and confirm the results
numerically. The schemes are:

x = g2(x) = −x
2 + 3x+ 3
x2 ,

x = g3(x) = 3
√

3 + 3x− x2,

x = g4(x) =
√

3 + 3x− x2

x

5 Newton’s method
As we have seen in the previous section, it is possible to use fixed point iteration in order to solve non-linear
equations. However, this method comes with potential issues:

• The convergence of the method depends on a good choice of the fixed point function g.

• The iterations usually only converge linearly, and thus a large number of iterations might be necessary
in order to obtain a good approximation of the solution.

As an alternative, we will, in this section, discuss Newton’s method for the solution of non-linear equations.
We start with the original equation

f(x) = 0.
(NB: Everything that follows is formulated for an equation of the form f(x) = 0; if the equation you have
is given in any other way, you first have to rewrite it in the form f(x) = 0.)

Our idea is to set up an iterative method for the solution of this equation. That is, we assume that we
have already found some xk that is reasonably close to the solution. We want to find an update ∆k such
that xk+1 := xk + ∆k satisfies f(xk+1) ≈ 0. Using a first order Taylor series expansion, we now obtain
that

0 ≈ f(xk + ∆k) = f(xk) + ∆kf
′(xk) +O(∆2

k) ≈ f(xk) + ∆kf
′(xk).

Solving this (approximate) equation for the update ∆k, we see that we should choose it as

∆k = − f(xk)
f ′(xk) .

Or, using that xk+1 = xk + ∆k, we get the iterations

xk+1 = xk −
f(xk)
f ′(xk) .

This yields the following method:

7

Newton’s method.
• Given f and a starting value x0.

• For k = 0, 1, 2, 3, . . .

xk+1 = xk −
f(xk)
f ′(xk)

5.1 Implementation
The method is implemented in the function newton(). The iterations are terminated when |f(xk)| is less
than a given tolerance.

See newton() in nonlinearequations.py.

Example 4: Solve f(x) = x3 + x2 − 3x− 3 = 0 by Newton’s method. Choose x0 = 1.5. The derivative
of f is f ′(x) = 3x2 + 2x− 3.

See example4 in nonlinearequations.py.

5.2 Error analysis
For the error analysis, we will start by trying to use the results of the previous section on fixed point
iterations.

Assume to that end that r is a solution of the equation f(x) = 0. Since Newton’s method requires a
division by f ′(x), we have to assume that f ′(x) 6= 0, at least if x is sufficiently close to r. Then we can
regard Newton’s method as a fixed point iteration with the fixed point function g defined as

g(x) := x− f(x)
f ′(x) .

Indeed, we see that the fixed point equation g(x) = x holds, if and only if f(x) = 0. Now we can apply
the fixed point theorem from the previous section, which states that this iteration will, for initial values
x0 sufficiently close to r, converge to r, provided that |g′(r)| < 1. For the derivative of g we get

g′(x) = 1− f ′(x)
f ′(x) + f(x)f ′′(x)

f ′(x)2 = f(x)f ′′(x)
f ′(x)2 .

Since f(r) = 0 (and f ′(r) 6= 0), we obtain in particular that

g′(r) = 0,

which obviously satisfies |g′(r)| < 1. Thus Newton’s method converges towards r if x0 is sufficiently close
to r.

In addition, we would obtain from the fixed point theorem a (at least) linear convergence rate and error
estimates. However, since g′(r) = 0, we can actually do better than that:

Denote by ek := r − xk the error after the k-th Newton iteration. Then we can perform a Taylor series
expansion of f(r) = 0 around xk and obtain

0 = f(r) = f(xk) + f ′(xk)(r − xk) + 1
2f
′′(ξk)(r − xk)2

for some ξk between xk and r. Now recall that, by the definition of Newton’s method,

f(xk) + f ′(xk)(xk+1 − xk) = 0.

Inserting this expression in the Taylor expansion above, we obtain that

0 = f(xk) + f ′(xk)(r − xk+1 + xk+1 − xk) + 1
2f
′′(ξk)(r − xk)2 = f ′(xk)(r − xk+1) + 1

2f
′′(ξk)(r − xk)2.

8

Finally we divide by f ′(xk) and use the definition of ek = r − xk and ek+1 = r − xk+1, which yields the
equality

ek+1 = −1
2
f ′′(ξk)
f ′(xk) e

2
k. (3)

Thus, if there exists a constant M ≥ 0 such that
1
2
|f ′′(ξk)|
|f ′(xk)| ≤M

for all k, then we have that
|ek+1| ≤M |ek|2,

which means that the sequence xk converges quadratically to r (see the note Preliminaries, section 3.1 on
"Convergence of an iterative process").

Finally, we can also see from (3) how close we have to be for the whole method to actually converge: If
|e0| < 1/M , then it follows that

|e1| ≤M |e0|2 < |e0|,
which shows that the error after the first step actually decreases. By repeating this argument (or applying
induction), we see that the same holds in each step, and the error actually always decreases.

All these considerations together prove the following theorem:

Theorem: Convergence of Newton iterations.

Assume that the function f has a root r, and let Iδ = [r − δ, r + δ] for some δ > 0. Assume further
that

• f ∈ C2(Iδ).

• There is a positive constant M such that∣∣∣∣f ′′(y)
f ′(x)

∣∣∣∣ 6 2M, for all x, y ∈ Iδ.

In this case, Newton’s iterations converge quadratically,

|ek+1| 6M |ek|2

for all starting values satisfying |x0 − r| 6 min{1/M, δ}.

5.3 Exercises:
1. Repeat Example 4 using different starting values x0. Find the two other roots.

2. Verify quadratic convergence numerically. How to do so is explained in Preliminaries, section 3.1.

3. Solve the equation x(1− cos(x)) = 0, both by the bisection method and by Newton’s method with
x0 = 1. Comment on the result.

6 Systems of nonlinear algebraic equations
In this section we will discuss how to solve systems of non-linear equations, given by

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

9

or short by
f(x) = 0.

where f : Rn → Rn.

Example 5: We are given the two equations

x3
1 − x2 + 1

4 = 0

x2
1 + x2

2 − 1 = 0

This can be illustrated by example5_graphs in nonlinearequations.py.

The solutions of the two equations are the intersections of the two graphs. So there are two solutions, one
in the first and one in the third quadrant.

We will use this as a test example in the sequel.

6.1 Newton’s method for systems of equations
The idea of fixed point iterations can be extended to systems of equations. But it is in general hard
to find convergent schemes. So we will concentrate on the extension of Newton’s method to systems of
equations. And for the sake of illustration, we only discuss systems of two equations and two unknowns
written as

f(x, y) = 0
g(x, y) = 0

to avoid getting completely lost in indices.

Let r = [rx, ry]T be a solution to these equations and some x̂ = [x̂, ŷ]T a known approximation to r. We
search for a better approximation. This can be done by replacing the nonlinear equation f(x) = 0 by its
linear approximation, by a multidimensional Taylor expansion around x̂:

f(x, y) = f(x̂, ŷ) + ∂f

∂x
(x̂, ŷ)(x− x̂) + ∂f

∂y
(x̂, ŷ)(y − ŷ) + . . .

g(x, y) = g(x̂, ŷ) + ∂g

∂x
(x̂, ŷ)(x− x̂) + ∂g

∂y
(x̂, ŷ)(y − ŷ) + . . .

where the . . . represent higher order terms, which are small if x̂ ≈ x. By ignoring these terms we get a
linear approximation to f(x), and rather than solving the nonlinear original system, we can solve its linear
approximation:

f(x̂, ŷ) + ∂f

∂x
(x̂, ŷ)(x− x̂) + ∂f

∂y
(x̂, ŷ)(y − ŷ) = 0

g(x̂, ŷ) + ∂g

∂x
(x̂, ŷ)(x− x̂) + ∂g

∂y
(x̂, ŷ)(y − ŷ) = 0

or more compact

f(x̂) + J(x̂)(x− x̂) = 0,

where the Jacobian J(x) is given by

J(x) =
(

∂f
∂x (x, y) ∂f

∂y (x, y)
∂g
∂x (x, y) ∂g

∂y (x, y)

)

It is to be hoped that the solution of the linear equation x provides a better approximation to r than our
initial guess x̂, so the process can be repeated, resulting in

10

Newton’s method for system of equations.

• Given a function f(x), its Jacobian J(x) and a starting value x0.

• For k = 0, 1, 2, 3, . . .

Solve the system J(xk)∆k = −f(xk).

Let xk+1 = xk + ∆k.

The strategy can be generalized to systems of n equations in n unknowns, in which case the Jacobian is
given by:

J(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

...
...

∂fn

∂x1
(x) ∂fn

∂x2
(x) · · · ∂fn

∂xn
(x)


6.2 Implementation
Newton’s method for system of equations is implemented in the function newton_system. The numerical
solution is accepted when all components of f(xk) are smaller than a tolerance in absolute value, that
means when ‖f(xk)‖∞ < tol. See Preliminaries, section 1 for a description of norms.

See the function newton_sys in nonlinearequations.py.

Example 6: Solve the equations from Example 5 by Newton’s method. The vector valued function f
and the Jacobian J are in this case

f(x) =
(
x3

1 − x2 + 1
4

x2
1 + x2

2 − 1

)
and J(x) =

(
3x2

1 −1
2x1 2x2

)

We already know that the system has 2 solutions, one in the first and one in the third quadrant. To find
the first one, choose x0 = [1, 1]T as starting value.

See the function example6 in nonlinearequations.py.

6.3 Exercises:
1. Search for the solution of Example 5 in the third quadrant by changing the initial values.

2. Apply Newton’s method to the system

xey = 1
−x2 + y = 1

, using x0 = y0 = 0.

6.4 Remarks
A complete error and convergence analysis of Newton’s method for systems is far from trivial, and outside
the scope of this course. But in summary: If f is sufficiently differentiable, and there is a solution r of
the system f(x) = 0 and with J(r) nonsingular, then the Newton iterations will converge quadratically
towards r for all x0 sufficiently close to r.

Finding solutions of nonlinear equations is difficult. Even if the Newton iterations in principle will converge,
it can be very hard to find sufficient good starting values. Nonlinear equations can have none or many
solutions. Even when there are solutions, there is no guarantee that the solution you find is the one you
want.

11

If n is large, each iteration is computationally expensive since the Jacobian is evaluated in each iteration.
In practice, some modified and more efficient version of Newton’s method will be used, maybe together
with more robust but slow algorithms for finding sufficiently good starting values.

12

	Introduction
	Scalar equations
	Existence and uniqueness of solutions

	Bisection method
	Implementation
	Exercises:

	Fixed point iterations
	Implementation
	Exercises:
	Theory
	Exercises:

	Newton's method
	Implementation
	Error analysis
	Exercises:

	Systems of nonlinear algebraic equations
	Newton's method for systems of equations
	Implementation
	Exercises:
	Remarks

