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1 Introduction
We will here discuss the numerical solution of systems of ordinary differential equations (ODEs).

Scalar ODEs. A scalar ODE is an equation of the form

y′(t) = f(t, y(t)), y(t0) = y0,

where y′(t) = dy
dt . The initial condition y(t0) = y0 is required for a unique solution.

NB! It is common to use the term initial value problem (IVP) for an ODE for which the initial value
y(t0) = y0 is given, and we only are interested in the solution for t > t0. In this note, only initial value
problems are considered.

Example 1: Consider the solution of the ODE

y′(t) = −2ty(t),

which can be written in the form y′(t) = f(t, y(t)) with

f(t, y) = −2ty.

The general solution is the function
y(t) = Ce−t2

,

where C is a constant that depends on the initial condition y(t0), which we can find by using the techniques
from Mathematics 1: We write first y′ = dy/dt and then multiply formally with dt to obtain

dy = −2ty dt.

If y is equal to 0, we see that the solution of the equation is the constant zero function. Else we can divide
by y and obtain

1
y

dy = −2t dt.

Now we compute indefinite integrals of both sides, which yields

log|y| = −t2 + K.

Taking the exponential on both sides, we get

|y| = eKe−t2
,

or
y = ±eKe−t2

.



Setting C = ±eK , we finally obtain the solution

y(t) = Ce−t2

for some C ∈ R (the case C = 0 corresponds to the constant zero solution we have discussed previously).
In order to find the constant C, we have to use the initial condition for y(t0). For instance, we obtain for
t0 = 0 and y(0) = 1 the solution

y(t) = e−t2
.

Systems of ODEs. A system of m ODEs is given by

y′
1 = f1(t, y1, y2, . . . , ym), y1(t0) = y1,0

y′
2 = f2(t, y1, y2, . . . , ym), y2(t0) = y2,0

...
...

y′
m = fm(t, y1, y2, . . . , ym), ym(t0) = ym,0

or, more compactly, by
y′(t) = f(t, y(t)), y(t0) = y0

where we use boldface to denote vectors in Rm.

y(t) =


y1(t)
y2(t)

...
ym(t)

 , f(t, y) =


f1(t, y1, y2, . . . , ym),
f2(t, y1, y2, . . . , ym),

...
fm(t, y1, y2, . . . , ym),

 , y0 =


y1,0

y2,0
...

ym,0

 ,

Example 2: The Lotka-Volterra equation is a system of two ODEs describing the interaction between
predators and prey over time. The system is given as

y′
1(t) = αy1(t) − βy1(t)y2(t),

y′
2(t) = δy1(t)y2(t) − γy2(t).

Here t denotes time, y1(t) describes the population of the prey species, and y2(t) the population of
predators. The positive parameters α, β, δ, and γ depend on the populations to be modelled. We can
write this system in the form y′(t) = f(t, y(t)) with

f(t, y) =
(

αy1 − βy1y2

δy1y2 − γy2

)
.

Note that the parameter t here actually does not appear on the right hand side.

Autonomous ODEs. An ODE is called autonomous if f is not a function of t, but only of y. The
Lotka-Volterra equation is an example of an autonomous ODE. A nonautonomous system can be made
autonomous by a simple trick: Just add the equation

y′
m+1 = 1, ym+1(t0) = t0,

and replace t with ym+1. Thus, the ODE from Example 1, with initial values y(0) = 1 can be written
as

y′
1 = −2y2y1, y1(0) = 1,

y′
2 = 1, y2(0) = 0.
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Higher order ODEs. An initial value problem for an ODE of order m is given by

u(m) = f(t, u, u′, . . . , u(m−1)), u(t0) = u0, u′(t0) = u′
0, . . . , u(m−1)(t0) = u

(m−1)
0 .

Here u(1) = u′ and u(m+1) = du(m)

dt for m > 0.

Such equations can be written as a system of first order ODEs by the following trick:

Let
y1(t) = u(t), y2(t) = u′(t), y3(t) = u(2)(t), . . . , ym(t) = u(m−1)(t)

such that

y′
1 = y2, y1(t0) = u0,

y′
2 = y3, y2(t0) = u′

0,

...
...

y′
m−1 = ym, ym−1(t0) = u

(m−2)
0 ,

y′
m = f(t, y1, y2, · · · , ym−1, ym), ym(t0) = u

(m−1)
0 .

This is a normal system of first order ODEs. The solution u of the original m-th order ODE is just the
first component y1 of the solution of this system.

Example 3: Van der Pol’s equation is a second order differential equation, given by

u(2) = µ(1 − u2)u′ − u, u(0) = u0, u′(0) = u′
0,

where µ > 0 is some constant. Common choices for initial values are u0 = 2 and u′
0 = 0.

It can be rewritten as a system of first order ODEs:

y′
1 = y2, y1(0) = u0,

y′
2 = µ(1 − y2

1)y2 − y1, y2(0) = u′
0.

2 Numerical methods for solving ODEs
In this note, we will discuss some techniques for the numerial solution of ordinary differential equations.
For simplicity or presentation, we will develop and discuss these methods mostly based on scalar ODEs.
The same methods, however, are equally applicable for systems of equations.

All the methods that we will discuss are so-called one-step methods. Given the ODE and the initial
values (t0, y0), we choose some step size h and let t1 = t0 + h. Based on this information, we calculate an
approximation y1 to y(t1). Then, we repeat this process starting from (t1, y1) in order to calculate an
approximation y2 of y(t2), where t2 = t1 + h. This process is repeated until some final point, here called
tend is reached.

In one-step methods, the approximation yk+1 of y(tk+1) does not depend on the values of yk−1, yk−2, . . . ,
y0. The main alternative to this type of methods are multi-step methods, where the approximation yk+1
of y(tk+1) takes into account those values as well.

It should be emphasized that this strategy only will find approximations to the exact solution in some
discrete points tn, n = 0, 1, . . ..

3 Numerical methods for solving ODEs
3.1 Euler’s method
Let us start with the simplest example, Euler’s method, known from Mathematics 1.

Given a (scalar) IVP
y′(t) = f(t, y(t)), y(t0) = y0,
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choose some step size h. The trick is as follows:

Perform a Taylor expansion (Preliminaries, section 4) of the exact (but unknown) solution y(t0 + h)
around t0:

y(t0 + h) = y(t0) + hy′(t0) + 1
2h2y′′(t0) + · · · .

Assume the step size h to be small, such that the solution is dominated by the first two terms. In that
case, these can be used as the numerical approximation in the next step, as the ODE implies that

y′(t0) = f(t0, y(t0)) = f(t0, y0).

From this we obtain the approximation

y(t0 + h) ≈ y(t0) + hy′(t0) = y0 + hf(t0, y0),

giving
y1 = y0 + hf(t0, y0).

This extends trivially to a system of equations, and to a general n, such that the algorithms becomes:

Euler’s method.

• Given a function f(t, y) and an initial value (t0, y0).

• Choose a step size h.

• For i = 0, 1, 2, . . .

• yn+1 = yn + hf(tn, yn),

tn+1 = tn + h.

An implementation of Euler’s method can be found in numode.py.

Numerical example 1: Test the implementation of Euler’s method on the problem

y′(t) = −2ty(t), y(0) = 1, 0 ≤ t ≤ 1,

which has the analytic solution
y(t) = e−t2

.

Try with different step sizes, for instance h = 0.1, h = 0.05 and h = 0.01. In each case, compare the
numerical solution with the exact one.

The following script solves the equation numerically, and plot the exact and the numerical solution. We
can also make a plot of the error: See the function ode_example1() in numode.py.

Numerical exercise 1: Repeat the example on a logistic equation, given by

y′ = y(1 − y), y(0) = y0,

on the interval [0, 10]. Use y0 = 0.1 as initial value. For comparision, the exact solution is

y(t) = 1
1 − (1 − 1

y0
)e−t

.

Solve the equation numerically by using different step sizes h, and try different initial values.
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Numerical example 2: Solve the Lotka-Volterra equation

y′
1(t) = αy1(t) − βy1(t)y2(t), y1(0) = y1,0,

y′
2(t) = δy1(t)y2(t) − γy2(t), y2(0) = y2,0.

In this example, use the parameters and initial values

α = 2, β = 1, δ = 0.5, γ = 1, y1,0 = 2, y2,0 = 0.5.

Solve the equation over the interval [0, 20], and use h = 0.02. Try also other step sizes, e.g. h = 0.1 and
h = 0.002.

NB! In this case, the exact solution is not known. What is known is that the solutions are periodic and
positive. Is this the case for the numerical solutions as well? Check for different values of h.

See the function num_example2() in numode.py.

3.2 Heun’s method
We will now discuss a first, improved, alternative to Euler’s method:

Assume that we want to solve an
y′(t) = f(t, y(t)).

Its exact solution can be written in integral form as

y(tn + h) = y(tn) +
∫ tn+h

tn

y′(t) dt = y(tn) +
∫ tn+h

tn

f(t, y(t))dt.

We now replace the integral on the right hand side by a numerical approximation using the trapezoidal
rule:

y(tn + h) ≈ y(tn) + h

2
(
f(tn, y(tn)) + f(tn+1, y(tn+1)

)
.

Then we replace y(tn) and y(tn+1) by the approximations yn and yn+1. The resulting method is the
trapezoidal rule for ODEs, given by

yn+1 = yn + h

2
(
f(tn, yn) + f(tn+1, yn+1)

)
.

This is an example of an implicit method. The numerical approximation yn+1 appears on both sides of
this equation and is therefore only implicitly given: If tn, yn is known, a nonlinear equation has to be
solved in order to find yn+1, and this has to be done for each step. There are important applications where
this actually makes sense, which we will discuss in a later lecture in the context of stiff ODEs.

However, for the moment we want to avoid this additional complication and thus replace the yn+1 on
the right hand side by some approximation. One natural possibility here is to apply one step of Euler’s
method. This results in Heun’s method:

un+1 = yn + hf(tn, yn),

yn+1 = yn + h

2
(
f(tn, yn) + f(tn+1, un+1)

)
.

The method is commonly written in the form

k1 = f(tn, yn),
k2 = f(tn + h, yn + hk1),

yn+1 = yn + h

2 (k1 + k2).

We notice that only a few lines have to be changed: see the implementation in numode.py.
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Numerical example 3: Let us compare the numerical solution from Euler’s and Heun’s methods on
the scalar test problem

y′ = −2ty, y(0) = 1

with the exact solution y(t) = e−t2 on the interval [0, 1]. Use h = 0.1 for Euler’s method and h = 0.2 for
Heun’s method.

The main computational work in these methods lies in the evaluations of the function f , especially in
the case of large systems of ODEs. Euler’s method requires one function evaluation in each iteration,
whereas Heun’s method requires two function evaluations: one for the computation of k1 and a second
one for the computation of k2. This means that a single iteration of Heun’s method is roughly double
as computationally expensive as one iteration of Euler’s method. If we want to have a fair comparison
between the two methods, we should thus use half as many iterations for Heun’s method as for Euler’s
method, which in turn means that the step length h for Heun’s method should be double that of Euler’s
method. In this example, using Euler’s method with h = 0.1 and Heun’s method with h = 0.2 both leads
to 10 function evaluations for the solution on the interval [0, 1], and thus to a comparable total amount of
computational work.

See the function ode_example3() in numode.py.

From the results we see that Heun’s method is significantly more accurate than Euler’s method, even
when the number of function evaluations are the same. Further, we notice that the error in Heun’s method
is reduced by a factor of approximately 1/4 whenever the step size is reduced by a factor 1/2, indicating
that the error satisfies |y(tend) − yN | ≈ Ch2, and the method is of order 2. In the theory part below, we
will prove that this certainly is the case.

Numerical exercises:

1. Solve the Lotka-Volterra equation from Numerical example 2 by Euler’s and Heun’s methods, again
using twice as many steps for Euler’s method as for Heun’s method.

• Use h = 0.01 for Euler’s method and h = 0.02 for Heun’s method.

• Use h = 0.1 for Euler’s method and h = 0.2 for Heun’s method.

2. Solve Van der Pol’s equation by use of Heun’s method and with Euler’s method, and compare.
Experiment with different choices of the step size h. Use µ = 2, and solve the equation on the
interval [0,20]. Experiment with different values of µ.

3. Implement the classical Runge–Kutta method (also known as RK4) and verify numerically that the
order of the method is 4. The method is given by

k1 = f(tn, yn)

k2 = f
(

tn + h

2 , yn + h

2 k1

)
k3 = f

(
tn + h

2 , yn + h

2 k2

)
k4 = f(tn + h, yn + hk3)

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4).

3.3 Runge–Kutta methods
Euler’s and Heun’s method are both examples of a large class of methods, called Runge-Kutta meth-
ods.

Definition: Runge–Kutta methods.
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An s-stage Runge-Kutta method is given by

ki = f
(
tn + cih, yn + h

s∑
j=1

aijkj

)
, i = 1, 2, · · · , s,

yn+1 = yn + h

s∑
i=1

biki.

The method is defined by its coefficients, which are given in a Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

with
ci =

s∑
j=1

aij , i = 1, · · · , s.

The method is explicit if aij = 0 whenever j ≥ i; otherwise it is implicit.

The Butcher-tableaux for some methods are:

0 0
1

0 0 0
1 1 0

1
2

1
2

0 0 0
1 1

2
1
2

1
2

1
2

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Euler Heun trapezoidal rule RK4

See the list of Runge–Kutta methods on wikipedia for more examples.

4 Theory
4.1 Existence and uniqueness results
Let us first state the conditions for which the ODE has a unique solution. We will need the following
definition (which will also be used later in this note):

Definition: Lipschitz condition.

A function f : R × Rm → Rm satisfies a Lipschitz condition with respect to y on a domain (a, b) × D
where D ⊂ Rm if there exist a constant L so that

∥f(t, y) − f(t, z)∥ ≤ L∥y − z∥, for all t ∈ (a, b) and y, z ∈ D.

The constant L is called the Lipschitz constant.

It is not hard to show that the function f satisfies the Lipschitz condition if the functions ∂fi/∂yj , i, j =
1, · · · , m are continuous and bounded on the domain and D is open and convex.
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Theorem: Existence and uniqueness of a solution.

Consider the initial value problem

y′ = f(t, y), y(t0) = y0.

If

• f(t, y) is continuous in (a, b) × D,

• f(t, y) satisfies the Lipschitz condition with respect to y in (a, b) × D,

with given initial values t0 ∈ (a, b) and y0 ∈ D, then the ODE has one and only one solution in
(a, b) × D.

In the following, we will assume that these conditions are satisfied.

4.2 Error analysis
When an ODE is solved by Euler’s method over some interval [t0, tend], how will the error at tend (or
some arbitrary point) depend on the number of steps? Or more specifically, choose the number of steps
N , let the step size be h = (tend − t0)/N , such that tend = tN . What can we say about the error
eN = y(tend) − yN ?

The error analysis will be done on a scalar equation, but it also holds for systems of equations, as described
in the end of the section.

Local and global errors. In this discussion we have to consider two kinds of errors:

• Local truncation error dn+1: This is the error made in one single step, starting from (tn, y(tn)).

• Global error en: This is the difference between the exact and the numerical solution after n steps,
en = y(tn) − yn.

In the following, we will see how to express the local truncation error, and we will see how the global and
the local errors are related. We will use all this to find an upper bound for the global error at the end
point tN = tend. The technique described here is quite standard for this type of error analysis.

Let us start with the local truncation error. The Taylor expansion of the exact solution of the ODE,
starting from (tn, y(tn)) is given by

y(tn + h) = y(tn) + hy′(tn) + 1
2y′′(ξ), t0 < ξ < t0 + h.

and one step with Euler’s method, starting from (tn, y(tn)) is

y(tn + h) = y(tn) + hf(tn, y(tn)).

where y′(tn) = f(tn, y(tn)). Thus the local truncation error is

dn+1 = y(tn + h) −
(
y(tn) + hy′(tn)

)
= 1

2h2y′′(ξ), ξ ∈ (tn, tn + h).

We then have the following two equations:

y(tn + h) = y(tn) + hf(tn, y(tn)) + dn+1, the equation above
yn+1 = yn + hf(tn, yn), Euler’s method.

We subtract the second from the first, use that en = y(tn) − yn, and the mean value theorem for functions
1 This yields the expression

en+1 = en + h
(
f(tn, y(tn)) − f(tn, yn)

)
+ dn+1 = en + hfy(tn, η)en + dn+1,

1The mean value theorem: There is a ν between y and z such that g(y)−g(z) = g′(ν)(y −z). In our case, use g(y) = f(t, y)
for a fixed t.
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Figure 1: Lady Windermere’s fan, named after a comedy play by Oscar Wilde. The figure describe the
transport and the accumulation of the local truncation errors dn+1 into the global error at the end point,
eN = y(tend) − yN .

where fy = ∂f
∂y , and η is some value between yn and y(tn). We now take the absolute value on each side,

and apply the triangle inequality:

|en+1| = |en + hfy(tn, η)en + dn+1| ≤ |en| + h|fy(tn, η)||en| + |dn+1|.

Assume now that there exist positive constants D and L satisfying

|fy(t, y)| ≤ L and |y′′(t)| ≤ 2D

for all values of t, y. Notice that L is a Lipschitz constant for f . From the inequality above we get
that

|en+1| ≤ (1 + hL)|en| + Dh2.

Since y0 = y(t0) we get e0 = 0. The inequality above therefore results in the following estimates for the
global errors:

|e1| ≤ Dh2

|e2| ≤ (1 + hL)|e1| + Dh2 ≤
(
(1 + hL) + 1

)
Dh2

|e3| ≤ (1 + hL)|e2| + Dh2 ≤
(
(1 + hL)2 + (1 + hL) + 1

)
Dh2

...

|eN | ≤ (1 + hL)|eN+1| + Dh2 ≤
N−1∑
n=0

(1 + hL)nDh2

We will now apply two well known results:

• The sum of a truncated geometric series:
N−1∑
n=0

rn = rN − 1
r − 1 for r ∈ R.
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• The series of the exponential:

ex = 1 + x + 1
2x2 + · · · = 1 + x +

∞∑
n=2

xn

n!

which proves that 1 + x < ex whenever x > 0.

Using these results, we obtain that
N−1∑
n=0

(1 + hL)n = (1 + hL)N − 1
(1 + hL) − 1 <

(ehL)N − 1
hL

= ehLN − 1
hL

= eL(tend−t0) − 1
hL

,

where the last equality holds because (tend − t0) = hN . Finally, we plug this into the inequality for |eN |
above, and we see that we have proved the the following upper bound for the global:

|y(tend) − yN | = |eN | ≤ eL(tend−t0) − 1
L

Dh = Ch,

where the constant C = eL(tend−t0)−1
L D depends on the length of the integration interval tend − t0, of

certain properties of the equation (L and D), but not on the step size h.

The numerical solution converges to the exact solution since

lim
N→∞

|eN | = 0.

If the step size is reduced by a factor of 0.5, so will the error. This is in agreement with the previous
numerical result.

Remark: Following the proof of the error estimate for Euler’s method, we see that a local truncation
error of size h2 leads to a final, global error of size h. Intuitively, this is because we need to take roughly
1/h steps in order to reach the point tend, although a precise proof is quite a bit more complicated than
that, as we have seen. However, what this also should mean is that a method with a truncation order of
size hp+1 should lead to a global error of hp. The results of the next section show that, under certain
conditions, this is indeed the case.

4.3 A general convergence result
A one-step method applied to a system of ODEs y′(t) = f(t, y(t)) can be written in the generic form

yn+1 = yn + hΦ(tn, yn; h),

where the increment function Φ typically depends on the function f and some parameters defining the
method.

For example, for Euler’s method we have

Φ(tn, yn; h) = f(tn, yn),

whereas for Heun’s method

Φ(tn, yn; h) = 1
2

(
f(tn, yn) + f(tn + h, yn + hf

(
tn, yn)

))
.

All Runge–Kutta methods can in principle be written in this form as well (though in general for a rather
complicated increment function Φ).

Definition: Order of a method.
A method is of order p > 0 if there is a constant C > 0 such that

∥eN ∥ = ∥y(tend) − yN ∥ ≤ Chp,

where N is the number of steps taken to reach tend using the step size h = (tend − t0)/N .
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The local truncation error dn+1 of such a method is

dn+1 = y(tn+1) − (y(tn) + hΦ(tn, y(tn); h))

Replace the absolute values in the above proof with norms (Preliminaries, section 1), and the argument
above can be used to prove the following:

Theorem: Convergence of one-step methods.

Assume that there exist positive constants M and D such that the increment function satisfies

∥Φ(t, y; h) − Φ(t, z; h)∥ ≤ M∥y − z∥ (1)

and the local truncation error satisfies

∥y(t + h) − (y(t) + hΦ(t, y(t), h)) ∥ ≤ Dhp+1

for all t, y and z in a neighbourhood of the solution. In that case, the global error satisfies

∥eN ∥ = ∥y(tend) − yN ∥ ≤ Chp, with C = eM(tend−t0) − 1
M

D.

In the case where Φ is a Runge–Kutta method, one can show that (1) is always satisfied for some constant
M provided that the function f satisfies a Lipschitz condition.

Example: Let us consider Eulers method, yn+1 = yn + hf(tn, yn). So in this case Φ(t, y) = f(tn, yn)
and (1) is exactly the same as the Lipschitz condition for f .

Order conditions for Runge–Kutta methods. It can be proved that a Runge–Kutta method is of
order p with p ≤ 4 if all the conditions up to and including p in the table below are satisfied:

p conditions
1

∑
i bi = 1

2
∑

i bici = 1/2
3

∑
i bic

2
i = 1/3∑

i,j biaijcj = 1/6
4

∑
i bic

3
i = 1/4∑

i,j biciaijcj = 1/8∑
i,j biaijc2

j = 1/12∑
i,j,k biaijajkck = 1/24

Here sums are taken over all the indices from 1 to s, with s being the number of stages of the method. It
is possible to derive similar conditions also for higher orders p, but the conditions rapidly become more
and more complex.

Recall also, that we have always assumed that Runge–Kutta methods satisfy the conditions ci =
∑

j aij

for all i = 1, . . . , s.

Example 6: Apply the conditions to Heun’s method, for which s = 2 and the Butcher tableau is

c1 a11 a12

c2 a21 a22

b1 b2

=
0 0 0
1 1 0

1
2

1
2

.
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The order conditions are:

p = 1 b1 + b2 = 1
2 + 1

2 = 1 OK

p = 2 b1c1 + b2c2 = 1
2 · 0 + 1

2 · 1 = 1
2 OK

p = 3 b1c2
1 + b2c2

2 = 1
2 · 02 + 1

2 · 12 = 1
2 ̸= 1

3 Not satisfied

b1(a11c1 + a12c2) + b2(a21c1 + a22c2) = 1
2(0 · 0 + 0 · 1) + 1

2(1 · 0 + 0 · 1)

= 0 ̸= 1
6 Not satisfied

The method is of order 2.

Convergence properties of Heun’s method (optional). This is included mostly to demonstrate
that convergence analysis is not a trivial task.

To prove convergence and to find the order of a method two things are needed:

• the local truncation error, expressed as a power series in the step size h

• the condition ∥Φ(t, y; h) − Φ(t, z; h)∥ ≤ M∥y − z∥

The local truncation error is found by comparing Taylor series expansions of the exact and the numerical
solutions starting from the same point. In practice, this is not trivial. For simplicity, we will here do this
only for a scalar equation y′(t) = f(t, y(t)). The result is valid for systems as well.

In the following, we will use the notation

ft = ∂f

∂t
, fy = ∂f

∂y
, ftt = ∂2f

∂t2 fty = ∂2f

∂t∂y
etc.

Further, we will surpress the arguments of the function f and its derivatives. So f is to be understood as
f(t, y(t)) although it is not explicitly written.

The Taylor expansion of the exact solution y(t + h) is given by

y(t + h) = y(t) + hy′(t) + h2

2 y′′(t) + h3

6 y′′′(t) + . . . .

Higher derivatives of y(t) can be expressed in terms of the function f by using the chain rule and the
product rule for differentiation:

y′(t) = f,

y′′(t) = ft + fyy′ = ft + fyf,

y′′′(t) = ftt + ftyy′ + fytf + fyyy′f + fyft + fyfyy′ = ftt + 2ftyf + fyyf2 + fyft + (fy)2f.

We then find the series of the exact and the numerical solution around x0, y0 (any other point will do
equally well). From the discussion above, the series for the exact solution becomes

y(t0 + h) = y0 + hf + h2

2 (ft + fyf) + h3

6 (ftt + 2ftyf + fyyf2 + fyft + (fy)2f) + . . . ,
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where f and all its derivatives are evaluated in (t0, y0). For the numerical solution we get
k1 = f(t0, y0) = f,

k2 = f(t0 + h, y0 + hk1)

= f + hft + fyhk1 + 1
2ftth

2 + ftyhhk1 + 1
2fyyh2k2

1 + . . .

= f + h(ft + fyf) + h2

2 (ftt + 2ftyf + fyyf2) + . . . ,

y1 = y0 + h

2 (k1 + k2) = y0 + h

2

(
f + f + h(ft + fyf) + h2

2 (ftt + 2ftyf + fyyf2) + . . .
)

= y0 + hf + h2

2 (ft + fyf) + h3

4 (ftt + 2ftyf + fyyf2) + . . . ,

and the local truncation error will be

d1 = y(t0 + h) − y1 = h3

12(−ftt − 2ftyf − fyyf2 + 2fyft + 2(fy)2f) + . . . .

The first nonzero term in the local truncation error series is called the principal error term. For h
sufficiently small this is the term dominating the error, and this fact will be used later.

Although the series has been developed around the initial point, series around tn, y(tn) will give similar
results, and it is possible to conclude that, given sufficient differentiability of f , there is a constant D
such that

|dn| ≤ Dh3.

Further, we have to prove the condition on the increment function Φ(t, y). For f differentiable, there is
for all y, z some ξ between t and y such that f(t, y) − f(t, z) = fy(t, ξ)(y − z). Let L be a constant such
that |fy| ≤ L, and for all t, y, z of interest we get

|f(t, y) − f(t, z)| ≤ L|y − z|.

The increment function for Heun’s method is given by

Φ(t, y) = 1
2
(
f(t, y) + f(t + h, y + hf(t, y))

)
.

By repeated use of the condition above and the triangle inequalitiy for absolute values we get

|Φ(t, y) − Φ(t, z)| = 1
2 |f(t, y) + f(t + h, y + hf(t, y)) − f(t, z) − hf(t + h, z + hf(t, z))|

≤ 1
2
(
|f(t, y) − f(t, z)| + |f(t + h, y + hf(t, y)) − f(t + h, z + hf(t, z))|

)
≤ 1

2
(
L|y − z| + L|y + hf(t, y) − z − hf(t, z)|

)
≤ 1

2
(
2L|y − z| + hL2|y − z|

)
=
(

L + h

2 L2
)

|y − z|.

Assuming that the step size h is bounded above by some H, we can conclude that

|Φ(t, y) − Φ(t, z)| ≤ M |y − z|, M = L + H

2 L2.

In conclusion: Heun’s method is convergent of order 2.

5 Error estimates and stepsize selection

6 Stiff ODEs and linear stability analysis

7 A summary of some terms and definitions
There have been quite a few definitions and different error terms in this note. So let us list some of them
(not exclusive):
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Definitions:

y′ = f(x, y) the ODE
y(x ; x∗, y∗), the exact solution of the ODE through (x∗, y∗)
y(x) = y(x ; x0, y0), the exact solution of y′ = f(x, y), y(x0) = y0

yn+1 = yn + hΦ(xn, yn; h), one step of the method

Let Φ represent a method of order p and Φ̂ a method of order p + 1.

Error concepts:

dn+1 = y(xn + h ; xn, y(xn)) −
(

y(xn) + hΦ(xn, y(xn); h)
)

, the local truncation error

ln+1 = y(xn + h ; xn, yn) −
(

yn + hΦ(xn, yn; h)
)

, the local error

len+1 = h

(
Φ̂(xn, yn; h) − Φ(xn, yn; h)

)
, the local error estimate, len+1 ≈ ln+1

en = y(xn) − yn the global error
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