k- 1
- ! ! 0.5
t t

Bt 1 2

constant.)

0.1s + 0.9 18 5s
24324 T s2-25

SZ -4 © 4 56

) 24 1—7s

©L%? 4 niq? T =3 = (s +2)

st + 65— 18 - 1

5% = 35 T (s + V2)(s - V3)

Applications of the First Shifting Theorem

Find the Laplace transform. (Show the details.)
29. 123 30. e~ cos Bt
32, 2¢7tcos?it - 33. sinhzcos ¢

Find the inverse transform. (Show the details.)

35 ! 36 12
T s+ 1)? T(s — 3)*
4
39, a

s2—25—3 s+H2+1

fJ’

7

41. (Growth) Prove 3).

2. a+bt+ e 3. sin wt 4. cos® wt
5, @bt 6. €' cosh 3¢ 7. sin (ot + ) 8. sin 2¢ cos 2z
@) 10. jF@® 11, ) f@ 12.  f®
k-
1 j | :_ E ——-.-ﬁ'
1t 1 4t P 1
f@® 14. 7@ 15. @ 16. ,f®

-s— 10

19. R

60 + 652 + 5%

2.

2 7

25. 2 —_——
o1 S +k

28 25®
st

31. 5¢* sinh 2t
34. (¢ + D%

3
37. s+ 65+ 18

2

40, —
s2+s+%

)

Laplace Transforms. Find the Laplace transforms of the following functions. Show the details of
your work. (g, b, ¢, w, 6 are constant)
1L.2t+6

Inverse Laplace Transforms. Given F(s) = £(f), find f(z). Show the details. (L, n, etc. are

42. (Inverse transform) Prove that $-1 is linear. Hint. Use the fact that ££ is Imear :

43. (Inverse transform) Rewrite Table 5, 1, using &1 (e.

44. (Replacement of ¢ by ¢f) If L(f@) =

g, 7N Us% = ).
F(?) and ¢ is any positive constant, sh

L(f(eD) = F(slcyle. [Hint. Use (1).] Use this to obtain £(cos wf) from Z(cos #).

45. (Nonexistence) Give simple examples of functions that have no Laplace IIansform» In

the reason.

Yok ugyy
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Initial Value Problems. Solve the following initial value problems by the Laplace transform. (St
the details of your work.) : )

Ly + 3y =10sins, - y0) =0

2.y =5y =15"% " yo) =1

3.y + 02y = 0012 ¥0) = =0.25 ..

4.y" =y -2y =y, Y0 =8, () =7

5 9"+ ay' - 2cz2y =0, y0) =6, - y'(O) =0

6. " +y=2cost, ¥0) =3, : 0 =4

7.y" — 4y’ +3y = 66=8 .. 0 =0y =0

8. " + 0.04y = 0.02:2, ¥0)=-25, Yy 0)=0
90y 42y~ y=6e7% O =2 Y0 =-14

10. PROJECT. Summary of Sec. 5.2. ('a)y Compare‘ the Laplace transform with the classica

of solving differential equations, explaining the advantages and illustrating the comparis

with examples of your own.

(b) Theorems 1 and 2 play a role different from that of Theorem 3, Explain the differe

L (© Extensiﬁn,ef Theorem 1. Show that if f(z) is continuous, except for an

1 methoq ;

ordinary

discontinuity (finite Jump) at ¢ = a (> 0), the other conditions remaining the same as in

Theorem 1, then (see Fig.109) .« .. ... .. ... LT
@) = s - £0) - [fa 0 - fla= e,

(@) Using (1*), find the Laplace transform of £(1) = if 0 < 7 < Lfo=1ifl1<t<

=0 otherwise.: Sl 18E Brater oo g e e
11. Derivation by different methods is possible for various formulas and is typical of

Laplace

- transforms. Find %(cos? (a) by using the result in Example 3, (b) by the method used in that:,
y 2 p

example, (c) by expressing cos® ¢ in terms of cos 2¢.

SR 1©)

0 a t
Fig. 109. Formula (1%) .

12. PROJECT. Extension of Example 4. Extend the method of differentiation in Example 4 to

obtain
52 _ o?
(a) &(r cos wr) = m .

* From this and Example 4 derive
) &1 ~—-—1—-§> = *-1—-3- (sin wt — wt cos wt)
(5% + ?) 20
1
‘ (c) £t ——-—S———-z- = —— tsin wt
: %+ o 2w
2
(d) £? < _)-L1 (sin wt + wt cos wi).
(5% + 0®? 20

Obtain similar formulas for hyperbolic functions, namely,

52 + a2
(e) £L(tcoshar) = m
2as
(f) £L(rsinhar) = ‘(;'2":“1‘5)_2 .

New Inverse Transforms by Integration (Theorem 3). Given £(f), find f(¢). (Show the details

of your work.)

1 L 15— 16. “s‘l"?
13. s2 + 4s 14' s3 — 2s2 * S(52 + wz) s+ s
5
- +1 m
1 1 (s—1 2 (s 20, ~5——pr
17. g 18. = (s n 1) 19. 2 \s2 109 s%s% + 72

"y
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1. WRITING PROJECT. Shifting Theorems. Explain and compare the different ro]est(;i :::
. two shifting theorems. Use your own formulations and examples; do not copy phrases fr

text.

Applications of the Second Shifting Thegrem ) . ee bansforms. (Show the
Leplace transform. Sketch the following functions and find their Lapla
details of your work.)
2. u(t — 1)
5 2u(t— 1) | |
Laplace Trensform. Sketch the given function, which is assumed to be zero outside the given

im‘erval. Find its Laplace transform. (Show the details of your work.) « o<i<a
8.2 (0<:1<1 9. sinwt (0<1< 7lw) 10, 1 — e ( SN
1. O<i<) 12. sint 13. 10cos it (1 <t

' . aplace transform. (Show the details of your work.)
Inverse Transform. Find end sketch the inverse Laplace transform. ( o 7
15, e~35/53 16. e7/(s — 1)

18. e72™(s% + 25 + 2) 19, se” /(% + 77)

4. (- D2 - 1)

30— Du@ -1
7. 4u(t — m) cos ¢

6. e~ 2yt — 3)

Q<1 <4

14, 4(e™% — 2¢7%)/s
17. 3(1 = e ™)/(s* + 9)
Initial Valve Problems. Some with Discontinuvons or Impulse Inputs. Using the Laplace
transform, solve the following problems. (Show :h,e details.)

20, 4y" — 4y" + 37y =0, y0) =3, YO = 1,0.5

21 y" + 6y" + 8y =7 — 7, y0) =0, Y@©=0 ,

22.y" +3y' +2y=4if 0O<tr<land8ifz>1; y0) =0, ly ©=0

23, y" + 9y =8sinrif 0<r<wmandQifr > m »0) =0, y () =4

24. y" = 5y' + 6y = 4etif 0 SI<Z2and0ifr>2; y0) =1, y'(0)=—2

25. " + ' =2y =3sinr—costif 0 << 27 and 3 sin 2r — cos 2t if 1 > 2,

YO =1 YO =0

26. y" + 16y = 45(t — ), 0 =2, Y@ =0

27. 9"+ y =8¢t — m) — 8¢t — 2m), y0) =0, 0 =1
28.y" + 4y + 5y =8¢ - 1), Y0 =0, 0 =3

29.y" + 2y =3y =8e7t + §(r — b, y0) =3, y©0) =-5
30. y" + 59" + 6y = ut - D+ 8¢ -2), ¥0) =0, y'©0 =1

Madels of Electric Circuits

RL-Circuit. Using the Laplace transform (and showing the details of your work), find the ¢13x
(1) in the circuit in Fig. 120, assuming i(0) = 0 and \ :

31 v() =1if0 < t<4mand O if r > 441
32 v() = sintif 0 <t < 27 and 0 otherwise

LC-Circuit. Using the Laplace transform (and showing the details of your work), find the currey
i(r) in the circuit in Fig. 121, assuming L = | henry, C = | farad, zero initial current and chag

on the capacitor, and

B.oov) =1if0<r< ] andv() = 1ifr> 1

M. v@®)=1if0<r<gand0 otherwise

v =1-etif0<t<mand0 otherwise ~

charge are zero at ¢ = (),

36. v(H) = 10000 if ] << 1.01 and 0 otherwise

3. v() = 100if 1 <t <?2and 0 otherwise. Compare with Prob. 36.
38 v = 0if r < 3 and 50¢t — 3)ift>3

I v =0ifr<2andetifr>2

R L C[ L

u(t) v(z)

Fig. 120. Problems 31, 32 Fig. 121. Problems 33-35 Fig. 122, Problems 36-39

RC-Circuit. Using the Laplace transform (and showing your work), find the current i(#) in the circut
in Fig. 122 with R = 100 ohms, C = 0.1 farad, and v(#) volts as follows. Assume that current

u(t)



Traﬁst;oz‘ms by Differentiation, Find the Laplace transform. (Show the details of your work.)
1. te 2. 3rsinh 4+ 3. 1 cosh 7t 4. re"cost
5. rcos wr 6. ?sin 2r 7. te7tsin s 8. 2 cos wr

h’i verse E fdiisf(}l ms b} i}iﬁxef en&idtion or Iﬂtv e i, g ’ .
egration US]“ 6 or (1 ilnd the inverse Ua“Si()““

1 Ky ‘ 2 2
9. 10, ——— S Tm 2546
— 23 . 11—
«=3) % = oF R P P T
Sz + 1 +
13. In 4. p 2742 « s s
(s — 1)2 5T 15. *—F e 16. arc cot;

17. (Shifring) Can vou solve Probs. 1 and 3 by the first shifting theorem?

erentiation) Find L") by repeated epplication of (1), choosing f(z) = %,
G FROJECT. Differentiation end Integration of Functions apd Transforms.
!

Meke 2 short draft on these four operaticns from memory. Then compare your notes with the
lext and write an essay of 2-3 peges on these operations and their significance in applications.
[ 26. CaSPROJECT. Laguerre Polynomials. (a) Write 2 CAS program for finding L,(z) in explicit
form from (10). Apply it to calculate lo, "+ +, L. Verify that lo, =+« I g satisfy Laguerre’s
differential equation (9). '
(b) Show that

Lo =3 U (”) m

and calculate Iy, - + +, I, from this formula.
(¢) Calculate [, - - -, Lo recursively from h=1,L4=1~ t by

n+ Dy =0C@n+1- Dl — nl,_,.
CAUTICM! Sometimes the functions T, = n!l, are also called Laguerre polynomials. Their

recursion is different! (Such differences in normalization are typical of several special functions—
and a possible source of EITOrS.)



erential Equations. In Probs. 1-14 solve the given initial value problem by means
of Lap ace transforms. (Show the details of your work.)

Loyi ==y + Yo 3= =y = s @ =1, y0) =0

2. )’£ = 6y; + 9y,, )’2’ =y + 6y, y1(0) = =3,

! . Cy2(0) =~

30y1= myit Ay ¥ =3y - 2y »(0) =3, y,(0) =4
. 14

4.7y = 5y + Y }’z; =y1 + 5y, ¥1(0) = =3, »(0) =7

Sy +tyz=2cost, y+yp=0, 3(0)=0, yy(0)=1

6. Y1+ yp = —5c0s2, Yy +y, = 5cos2

10 =1, 30 =1, y(0) = -1, y,0 =1
7.¥1 =31+ 3ys y3 =4y - 4L, ‘
710 =2, y1(0) =3, 30) =1, y0) =2
8. )” = =5y + 232’ Yo' = 2y1 — 2ys,
1 (0) =3, 70 =0, y0) =1, }’2(0) =0
9, yi +yg=2sivht, ys+ys=¢e, ys+y; =2 +e7

y10) =1, 30 =1, y50) =0
10. 2y — yo—y5 =0, y; +ys=4t+2, y2+y3—-z+2

y1<0> = )2(0) = y5(0) =0
1L }’1 = -y +1-ut—-1), )’2 =y +1-ut-1), y1(0) =0, y(0)=0
12091 + ¥, = 2[1 —u(t — 2m@)]cost, ¥ +y;=0,  y(0) =0, y(0) =
13. 31 = 29y — 4yp + u(t = Ve, yg =y = 3y, +u@t = De',  3,(0) =3, y(0) =0
14, y1 = 291 + dyg + 641u(t = 1), yp =y1 + 2y, 30(0) = =4, y,(0) = -

18, TEAM PROJECT. First-Order Linear Systems of Differential Equations. —

(z) Models. Solve the models in Examples 1 and 2 of Sec. 3.1 by the Laplace transform method
and compare the work with that in Sec. 3.1.

(h) Homogeneous Systenss. go‘ve the systems (8), (11)—~(13) in Sec. 3.3 by the Laplace
transform method.

(¢) Nenhomogeneous Systems. Solve the systems (3) and (4) in Sec. 3.6 by the Laplace
transform method. :

In (a)—(c) always show the details of your work. -
Further Applications

. 16. (Mixing probles) What will happen in Example 1 if you double all flows, leaving the size of
the tanks and the initial conditions as before. First guess, then calculate. Can you relate the new

| solution to the old one?

| (Sipusoidal infiow from the catside) What will happen in Example 1 if you aqsume that the
% total salt content of the inflowing 6 gal/min varies between 0 and 6 according to 6 sm 17 Why
| is yo(r) much less wavy than y;(#)?

2 . (Forced vibrations of two masses) Solve the model in Example 3 with k = 3 and initial
| conditions y,(0) = 1, y5(0) = 1, y1(0) = 3, y5(0) = —3 under the assumption that the force
\] 8 sin 7 &cts on the first body and —8 sin r acts on the second.

‘i . (Blectrical netweork) Using the Laplace transform method, find the currents i;(7) and iy(f) in
1\ Fig. 132, where v() = 195 sin 1 and i3(0) = 0, ix(C) = 0. How soon will the currents practically
\ reach their steady state? Guess what the little curve in Fig. 132 is.

ngle sine wave) Solve Prob. 19 when the electromotive force acts from 0 to 247 only. Can
you obtain the solution from that in Prob. 19 practically without calculation?

2Q 4Q ' i®)
g\ 401 018

i\ i\ 20} i(t)

5‘.\ v(t) § 4Q 0 1 Nl i |

g 2 \4a_ 6/ 8 10\ ¢
- 20k

1H 2H -40

! Network Currents

Fig. 132. Electrical network and currents in Problem 19



Fundamental Period. Find the smallest positive period p of

1. cosx, sinx, cos2x, sin2x, cosax, sinarx, cos2wx, sin 24X

. 27x . 2mx 2mnx 2mnx
2. cosnx, sinnx, cos——, sin——, COS sin

k k k-’ k
3. (Vector space) If f(x) and g(x) have period p, show that & = af + bg (4, b constant) has the
period p. Thus all functions of period p form a vector space.
4. (Integer maultiples of period) If p is a period of f(x), show thatnp, n = 2,3, - -, is a period

of f(x).

5. (Censtant) Show that the function f(x) = const is a periodic function of period p for every
positive p.

6. (Change of scale) If f(x) is a periodic function of x of period p, show that f(ax), a # 0, is a
periodic function of x of period p/a, and f(x/b), b # 0, is a periodic function of x of period bp.
Verify these results for f(x) = cosx, a = b = 2.

5

Graphs of 24-Periodic Functions
Sketch or plot the following functions f(x), which are assumed to be periodic with period 27 and,
for —ar < x < 7, are given by the formulas

7@ =x 8 f() =2 9 fw =Mk
10. f&x) = 7 — |x] 11. f(x) = |sin x] 12. f(x) = e7H
E Cfx if —m=x=0 . (0 if —m=x=0
13, f(x) = . 14. f(x) = :
0 if 0=x=mnw x2 if O=x=w
~1 if “m<x<0 . x  if —w<x<0
15. f(x) = 16. f(x) =
i if O<x<m a—x if O<x<m
0 if —7<x<0 a2 if —m<x<0 .
17, fix) = 18. f(x) =
e ® if O<x<m —x2 if 0<x<m .~
Eﬁé 19. CAS PRCJECT. Plotting Periodic Functions. (2) Write a program for plotting periodic

functions f(x) of period 2 given for —7 < x = 7. Using your program, plot the functions
in Probs. 7-12 for —10a = x = 107 Also plot some functions of your own choice.

() Extend your program to 27-periodic functions given on two equal subintervals as in Probs.
13—18. Apply your program to those problems with —107 = x = 10w,

@ 20. CAS PROJECT. Partial Sums of Trigenometric Serjes. (a) Write a program that prints a
R, g p o p

partial sum® of a trigonometric series (4). Applying it, list all partial sums of up to five nonzero
terms of each of the series

2
3

W | =

2 — 4lcos 1 2 +1 3 L 54.+
_ == 2 - — ¢ .
4 €08 2x g cos 3x — - cos 4

4 (. 1 . 1 1 .
— t{sinx + —sin3x + —sinSx + —sin7x + - - -
T 3 5 7

1 1 1
2 3 —_— —] _|,. —Q) —_— — Q1 + — s e s .
(sm x 2 sin 2x 3 sin 3x 7 sin 4x )

(b) Plot the partial sums in (a) (for each series on common axes). Guess what periodic function
the series might represent. '



0.9
Fourier Series

Showing the details of your work, find the Fourier series of the function f(x), which is assumed to
have the period 27, and plot accurate graphs of the first three partial sums, where f(x) equals

1. flx) 2. f(x)
1 1
L e B
- -7/2 0 T2 n x -7 0 2 T x
3. flx) 4, f(x)q\
k Toap
L ] i 1
- 0 T , o : o=
L
5. f0=x (~m<x< ) 6. f(x) = x 0 <x<2w)
T fx)=x% (~n<x< ) 8 f=x O<x< 277)
9. fx) = x8 (—r<x<a) 10. fx) = x + |5 (—r<x<m)
o l if—-z<x<o- v -1 if O0<x< a2
11 f(x) = e 12, f(x) = .
=1 if 0<x<qgq 0 fm2<x<g
I if =2 <x<a/2 x f—a/2 <x<ap
13, f(x) = S » 4. f(0) = -
-1 if 2 <x<3u2 ¢ T—x if @2<x<3pn
x if—m2<x< a0 ; A , X% if -—7,—/2 <x< 7?2
15, f(x) = 16. f(x) =

0 if #2<x<3mn
17. (D;'sconﬁxmity) Verify the las
. in Prob. 1. SRR TPy SR
18. CAS (Orth(_>go;m}5¥y). Integrate and plot a typical integral, for instance, that of §in 3x sin 4x,
from —a 10 4, as 2 function of a, and conclude orthogonality for @ = 7 from the plot.
19. CAS PROIECT. Feouorier Serjes. (@) W
Fourier series . &

w24 if 2 < x < 37/2

t statement in Theorem ] regarding discontinuities for the function

'

rite 2 program for obtaining any partial sum of a
{b) Using the program, list all partial sums of up to five nonzero terms of the Fourier series in
Probs. 5, 11, and 15, and make three corresponding plots. Comment on the accuracy.

P &p

20. (Calevlus review Review integration techn; ves for integrals as they ma arise from the Euler
fud o ) y
formulas, for instance, definite integrals of x sin nx, x2 cos nx, €% sin nx, etc.



19. CAS PRO

20. CAS PROJECT. Gibbs Phenomenon. The partial su

Fourier Series for Period p = 21

Find the Fourier series of the periodic function
three partial

), of period p = 2L, and sketch F(x) and the first
sums. (Show the details of your work.)
1. f(x) = —1

fx

(1 <x<0), f)=1 O<x<1), p=2L=2
2. f=1 (-1<x<0), f=-1 0<x<), p=2L=2
3 f)=0 (-2<x<0), f=2 ©<x<2), p=2L=4

4. f(0) = ¥ (=2<x<2), p=2L=4
5. f(x) = 2x (-1<x<1), p=2L=2

6. fx) =1-x (-1<x<1), p=2L=2

7. f(x) = 3x*% (~1<x<1), p=2L=2

8. f=3+x (-i<x<0, fW=3-x (0<x<d, p=20=1
8. f(x) =0, (-1 <x<0), fx)=x O<x<), p=2L=2

0. fy=x (O<x<l, f=1-x (1<x<2), p=2L=2

11. f(x) = 7rsin wx O<x<), p=2L=1

12, f(x) = w32 (-1<x<1, p=2L=2

13. (Periodicity) Show that each term in (1) has the period p = 2L.

14. (Rectifier) Find the Fourier series of the periodic function that is obtained by passing the voltage
v(r) = V, cos 1007 through a half-wave rectifier.

15. (Transformation) Obtain the Fourier series in Prob. 1 from that in Example 1, Sec. 10.2.

16. (Travsfor

“mation) Obtain the Fourier series in Prob. 7 from that in Prob. 7, Sec. 10.2.
17. (Transformation) Obtain the Fourier series in Prob. 3 from tt
£

18. (Imterval of Integration) Show that in (2) the intery

hat in Example 1, Sec. 10.2.
other interval of length p = 2L,

al of integration may be replaced by any
FW SN X

any partial sum of a Fourier series (1).
(b) Apply the program to Probs. 5—7, plotting the fir

series on common axes. Choose the first five or I
the given function reasonably well.

JECT. Foucier Series of 2L-Periodic Functons. (@) Write a program for obtaining

st few partial sums of each of the three
nore partial sums until they approximate

ms s,(x) of a Fourier seres show
oscillations near a discontinuity point. These do not disappear as n increases but instead become
sharp “spikes.” They were explained mathematically by J. W. Gibbs.'® Pot 5,(x) in Prob. 5.
When n = 20, say, you will see those oscil

lations quite distinctly. Consider two other Fouder
series of your choice in a similar way. ,



Even and Odd Functions
: ; - 9
Are the following functions odd, even, or neither odd nor even!? |
1 |5, xcosny xPcosnx, coshx sinhx sinx +cosx

. . s -lr‘
2. x4+ 2% i, €% €, sin®x xsinx, lox xcosx e

i eriodi iod 2 ven, odd or
Are the following functions f(x), which are assumed to be periodic, of period 2, even,
neither even nor odd?

3Lf) =2 0<x<2w _ 4. f(x) = x‘i‘ ~(O < x <2

5 flx) = e (mm<x<m) 6. flx) = |sin3d (—wr<x<m)
0 if 2<x<2wm—2 cos?x if—w<x<0

710 = b I@= sin?x if 0<x<m
x if-2<x<2

8. f(x) = x® (—w/2 <x<37w2)

6. PROJECT. Even and Cdd Fonetions. (a) Are the following expressions even or odd?
Sums and prodvcts of even functions and of odd functons. Products of even times odd
functions. Absolute values of odd fanctions. F&) + f(=x) and f(x) — f(—x) for arbitrary
F&).

(b) Write € 1/(1 — X}, sin (x + k), cosh (x + k) as sums of an even and an odd function.

() Find all functions that are both even and odd.

(@) Is cos®x even or 0dd? €in® x? Find the Fourier seres of these two functions. Do you
recognize familiar identities? :

Fourier Series of Fven and Odd Functions

State whether the given function is even or odd. Find its Fourier series, Sketch the function and

some partial sums. (Show the details of your work.)

: k if —m2 <x< 712 —2x f-m<x<0
1L f(x) = : 12, f(x) = 4.
0 if #R<x<3wR2 2x if O<x<am
X if —w2<x<w/2 x fo<x<aq
13. f) = 14. f(x) =
m—x if w2 <x<3w?2 T—x fr<x<qy

I5. f) =x%2 (~m<x< ) 16 f) =3x(w? = x?) (~w<x< )

Show that
TS (L R (Use Prob. 11.)
35 7 4
E&1+l+l+~1w+—1—+-'-=—71f (Use Prob. 15.)
4 9 16 25 6
119.1~—1*+—1—~~~1—+—--~-=1Ti (Use Prob. 15.)
.4 9 16 12

Half-Range Expansions
Find the Fourier cosine series as wel] as the Fourier sine series. Sketch f(x) and i
extensions. (Show the details.) .

2. fx) =1 (O<x<l) 2L f)=x (0<x < Ly 22, f
Bof@=m—x O<x<7) 24 fx)=2* O<x< L) 25 f()

ts two periodic
¥ (0<x<L)
e® 0<x<l)



i
- R

Complex Feurier Serfes. Find the complex Fourier series of the following functions. (Show the

details of your work.)

2. /) = -1il —7<x<0, f=1f0<x<m
L) =x (—r<x<m

4, f) =0if —w <x<0, f=1if0<x<m
5, f)=x O0<x<2m

6. fx) =22 (—w<x<m)

1. {Calenlus review) Review complex numbers.

ven 27 d oc d fﬂ‘i!ctx LANS i i & ever Cclio <]

(E 4 ¢ ) W H piex COut coetticie ifS Of af L

7. en an 4 Hu S row that the con [+ LISt 8] 1 en Ll 1 &
{ion are p\hﬁ ﬂlldgiﬂ&l y.

of an odd func
real and those Prob. 5 to real form.

8. (Cenversion) Convert the Fourier series 1n " R o
. i ! B _ ) )
9, (Fourier coefficients) Show that ap = Co» In Cn n ” |

- 2 o . . .
el totents. It is very interesting that the ¢, in (8) can be

10. PROJECT. Complex Fourier Coeflic "o this, multiply

derived directly by a methad similar to .
the series in (8) by 2~ with fixed integer m and int ;
. 3 H AR o'e
sides (allowed, for instance, in the case of uniform convergence), 10 g
& ’

in & 107
hat for the a, and b, 1 seC. 10.2 o
egrate termwise from — to 7 O oth

J’ f(x)e-imx dx = 2 c, J‘”"ei(n—m)x dx.

== -0

m and 0 whea n # m [use (5)], so that

he total square ertor £ on the interval

i : 2 =
Show that the integral on the right equals 277 when n

you get the coefficient formula in (8).

Minimum Square Error
In eac i i i
_ <h cas<e ﬂn.d the. f}mctxon F(x) of the form (2) for which ¢
7= x = 71s minimum and compute this minimum value for N =1,2,---, 5 where, for
) 2, ) s )

—m<x<m

L f=-1 if —E<x<0, f=1if 0<x<aq

2. f(x) = | 3 f)=x
flo) = x* ’ 5 fx) = £°

4.

6. f)=x if —w2<x< 2,  f(x)
7. f) =x if —a2<x< 72, flx)
8.
9.

m—x if w2<x<3%?
Oelsewhere in —r < x < 7

1
[}

F) = x(7® - ¥3/12

(Monotonicity) Show the int are er i
| N potons ty) * .ha.t the minimum square error (6) is a monotone decreasing function of
| <z 0 you use this in practice? What is the smallest N in Prob. 1 for which £* = 0.27
10. CAS PROYECT. Sauars Rrror for Conti 18 and D i Vi ca
" . 5 2 Error f antiomons aud Discontinuons Functions., (a) Why can
u expect the decreas e minim Guare er i nous
;\ p =Xpect tf rease o'f the minimum squace error to be mors rapid for a continuous
\ unction than for a discontinuous one?
\ (b) Ilustrate the claim in (a) b e i
S e /) OY more extensive computations for Probs. 4
' 5. 4 and 5 and Ex:
! . Lsay, forv =1, 1000. Frample

e

| Applications of Parseval’s Identity
Using Parseval’s identity, prove the following. In Probs. 11—13 compute the first few partial sums
| to see that the convergence is rather rapid. :

| 11 1 7

f 11. l+-£4—+-3—4+24—+---=% (Use Prob. 7 in Sec. 10.2.)
{

i

1 1 2

i 2.1 + —§ -+ ;g + o= —8— (Use Prob. 13 in Sec. 10.2.)

! P4

( ; 1 1 7t

! 3.1+ pr + o + e + = 36— (Use Prob. 13 in Sec. 10.4.)

| ié.f cos® x dx ="— ]5_[ cogﬁxdx=_5ng



