MIDTERM TEST – TMA4125 MATEMATIKK 4N

Thursday 16th of March 2006 Time: 10:15 am – 11:15 pm

Exercise 1

Which of the following functions is the Laplacian transformed of $e^{-t} * cost$?

$$\begin{array}{lll} \mathbf{A}: & \frac{s}{(s^2+1)(s+1)} & \mathbf{B}: & \frac{1}{(s^2+1)(s+1)} \\ \mathbf{C}: & \frac{1}{(s^2-1)(s+1)} & \mathbf{D}: & \frac{s}{(s^2+1)(s-1)} \end{array}$$

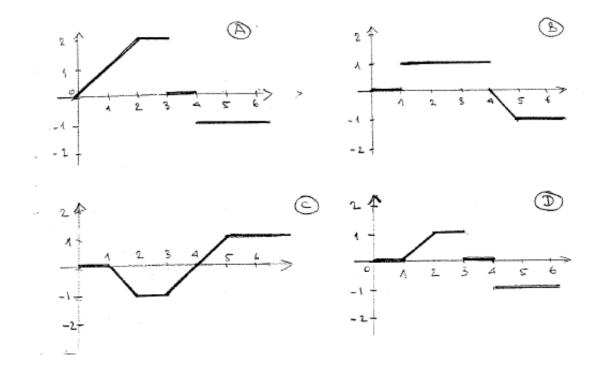
Exercise 2

Which of the functions beneath is the Laplacian transformed to the solution of the following initial value problem:

$$y''(t) + 4y(t) = \delta(t - 2), y(0) = 0, y'(0) = 0,$$

where δ is the Diracs δ -function.

A :
$$\frac{e^{2s}}{s^2 + 1}$$
B : $\frac{e^{-s}}{s^2 + 4}$


C : $\frac{e^{-2s}}{s^2 + 4}$
D : $\frac{e^{-2s}}{(s+2)^2}$

Exercise 3

Let

$$f(t) = (t-1)u(t-1) - (t-2)u(t-2) - u(t-3) - u(t-4)$$

where u is the Heaviside-function. Which of the pictures beneath is the graph of f?

Exercise 4

Look at the 2π -periodic function $f(t) = \cos^2 t$. Let

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}$$

be its expansion in a complex Fourier series. The coefficient 🖓 will then be equal to

\mathbf{A} :	1	B :	$\frac{1}{2}$
$\mathbf{C}:$	$-\frac{1}{2}$	D :	$\frac{1}{2}$ $\frac{1}{4}$

Exercise 5

Let f be an even 2π -periodic function such that $f(t) = \frac{t^2}{2}$ for $0 \le t \le \pi$. The value f(7) is then

A:
1
B:
0

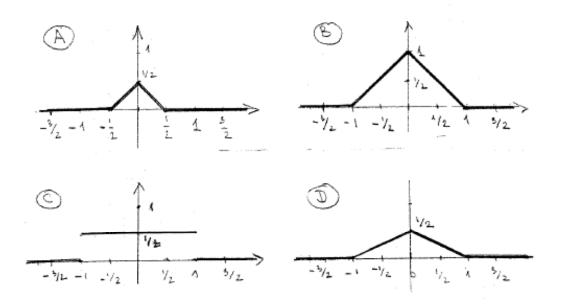
C:
$$\frac{1}{2}(3\pi - 7)^2$$
D:
 $\frac{1}{2}(7 - 2\pi)^2$

Exercise 6

Let f be the function defined in the previous exercise (exercise 5). It is known that its Fourier series has the form

$$f(t) = \frac{\pi^2}{6} + 2\sum_{1}^{\infty} \frac{(-1)^n}{n^2} \cos nt.$$

The sum $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{4} + \dots$, (which means $\sum_{1}^{\infty} \frac{1}{n^2}$) is equal to


A:
$$\frac{\pi}{3}$$
 B: $\frac{\pi^2}{3}$
C: $\frac{\pi^2}{4}$ D: $\frac{\pi^2}{6}$

Exercise 7

Let

$$f(t) = \begin{cases} 1, & \text{hvis } |t| \le 1/2; \\ 0, & \text{ellers.} \end{cases}$$

Which of the pictures beneath is the graph of f * f?

Exercise 8

Let

$$f(t) = \begin{cases} 1 - |t|, & \text{hvis} |t| \le 1; \\ 0, & \text{ellers.} \end{cases}$$

The Fourier transformed (in complex form) of f is

$$\mathbf{A} := \frac{2}{\pi} \left(\frac{\sin(w/2)}{w} \right)^2 \qquad \qquad \mathbf{B} :\qquad \frac{\cos w - 1}{w^2} \\ \mathbf{C} := \pi e^{-w^2/2} \qquad \qquad \mathbf{D} :\qquad \frac{\sin(w/2)}{w}$$

w