Finite Dimensional Normed Spaces

Theorem. If E is a finite-dimensional vector space and $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on E, then they are equivalent norms, i.e. there exists $\alpha, \beta > 0$ such that

$$\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1$$

for all $x \in E$.

In order to prove this we need a lemma that we do not prove.

Lemma. If $A \subseteq \mathbb{R}^n$ is closed and bounded, and $f : A \to \mathbb{R}$ is continuous, then there are points $t_0, t_1 \in A$ such that $f(t_0) \leq f(t) \leq f(t_1)$ for all $t \in A$. \Box

Proof of the theorem. Let $\|\cdot\|$ be a norm on E. Fix a basis e_1, \ldots, e_n of E and define $f: \mathbb{C}^n \to \mathbb{R}$ by

$$f(t) = \|t_1 e_1 + \dots + t_n e_n\|.$$

Then we have that

$$f(t) \le \sum_{j=1}^{n} |t_j| ||e_j|| \le \left(\sum_{j=1}^{n} |t_j|^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} ||e_j||^2\right)^{\frac{1}{2}},$$

and hence

$$f(t) \le b \|t\|$$

for all $t \in \mathbb{C}^n$. Here $b = \left(\sum_{j=1}^n \|e_j\|^2\right)^{\frac{1}{2}} > 0$ and $\|t\|$ also denotes the norm in \mathbb{C}^n .

Let $A = \{t \mid ||t|| = 1\} \subseteq \mathbb{C}^n$. Then A is both closed and bounded in \mathbb{C}^n , and $f : A \to \mathbb{R}$ is continuous. By the lemma there is a $t_0 \in A$ such that $f(t_0) \leq f(t)$ for all $t \in A$. Let $a = f(t_0) > 0$. For any $t \neq 0$ in \mathbb{C}^n we have that $\frac{1}{\|t\|}t \in A$, and $a \leq f(\frac{1}{\|t\|}t) = \frac{f(t)}{\|t\|}$. Thus we have

$$a\|t\| \le f(t)$$

for all $t \in \mathbb{C}^n$.

Hence for $x = \sum_{j=1}^{n} t_j e_j$ we have

 $a\|t\| \le \|x\| \le b\|t\|$

where a, b > 0. For the two given norms we then have

$$a_1 ||t|| \le ||x||_1 \le b_1 ||t||$$

$$a_2 ||t|| \le ||x||_2 \le b_2 ||t||$$

Thus

$$\frac{a_2}{b_1} \|x\|_1 \le a_2 \|t\| \le \|x\|_2 \le b_2 \|t\| \le \frac{b_2}{a_1} \|x\|_1,$$

and we may take $\alpha = \frac{a_2}{b_1}$ and $\beta = \frac{b_2}{a_1}$. \Box

Corollary. Any finite dimensional normed space is a Banach space. In particular \mathbb{C}^n and \mathbb{R}^n are Banach spaces with respect to any norm.

Proof. If $x = \sum_{j=1}^{n} t_j e_j$ as in the proof above, then we have $(\|\cdot\|$ denotes the norm on both E and \mathbb{C}^n)

$$a||t|| \stackrel{(1)}{\leq} ||x|| \stackrel{(2)}{\leq} b||t||$$

Let $(x^{(m)})_{m=1}^{\infty}$ be a Cauchy sequence in E, and write $x^{(m)} = \sum_{j=1}^{n} t_{j}^{(m)} e_{j}$ where $t^{(m)} = (t_{1}^{(m)}, \ldots, t_{n}^{(m)}) \in \mathbb{C}^{n}$. Then (1) shows that $(t^{(m)})_{m=1}^{\infty}$ is a Cauchy sequence in \mathbb{C}^{n} . \mathbb{C}^{n} is complete, so let $t = \lim_{m \to \infty} t^{(m)} \in \mathbb{C}^{n}$ and $x = \sum_{j=1}^{n} t_{j} e_{j} \in E$. Using (2) we have

$$||x^{(m)} - x|| \le b||t^{(m)} - t||$$

and this gives that $\lim_{m\to\infty} x^{(m)} = x$ in E. Hence E is complete. The rest is then clear. \Box

Recall from Problem Set No. 2, Problem 3 b) that

$$||x||_{\infty} \le ||x|| \le \sqrt{n} ||x||_{\infty}$$

and

$$\|x\|_{\infty} \le \|x\|_1 \le n \|x\|_{\infty}$$

in \mathbb{R}^n (or \mathbb{C}^n) where

$$\|x\|_{\infty} = \max_{1 \le j \le n} |x_j|$$
$$\|x\|_1 = \sum_{j=1}^n |x_j|$$
$$\|x\| = \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}.$$

(IH; October 24, 2006)