Norges teknisk-naturvitenskapelig universitet
Institutt for matematiske fagTMA4145 Linear Methods
Suggested solutions
Exam December 18, 2006

Problem 1

- a) Banach's Fixed Point Theorem: Let $(X, d), X \neq \emptyset$, be a complete metric space, and let $f: X \to X$ be a contraction. Then f has exactly one fixed point.
- **b)** Since $X \neq \emptyset$ is complete and f^2 is a contraction, Banach's Fixed Point Theorem gives that f^2 has a unique fixed point $x^* \in X$. Since $f^2(f(x^*)) = f(f^2(x^*)) = f(x^*)$, the uniqueness gives that $f(x^*) = x^*$. Hence x^* is a fixed point of f as well. If f(x) = x, then also $f^2(x) = x$, and again by the uniqueness of x^* , $x = x^*$. Thus f has exactly one fixed point.
- c) For $x, y \in C[0, 1]$ and $t \in [0, 1]$ we have

$$|Fx(t) - Fy(t)| = |\int_0^t (x(s) - y(s))ds|$$

$$\leq \int_0^t |x(s) - y(s)|ds$$

$$\leq (\int_0^t ds)d_\infty(x, y)$$

$$= td_\infty(x, y).$$

This gives that

$$\begin{split} |F^2x(t) - F^2y(t)| &\leq \int_0^t |Fx(s) - Fy(s)| ds \\ &\leq (\int_0^t s ds) d_\infty(x, y) \\ &= \frac{1}{2} t^2 d_\infty(x, y) \\ &\leq \frac{1}{2} d_\infty(x, y). \end{split}$$

Hence

$$d_{\infty}(F^{2}x, F^{2}y) = \max_{0 \le t \le 1} |F^{2}x(t) - F^{2}y(t)| \le \frac{1}{2}d_{\infty}(x, y),$$

and F^2 is a contraction on C[0,1] with the d_{∞} -metric. By **b**) F has a unique fixed point x^* since $(C[0,1], d_{\infty})$ is a complete metric space, and we can find x^* by

iteration starting from any $x_0 \in C[0,1]$. Let $x_0 = 0$, and let $x_{n+1} = F^2 x_n$. Then

$$x_1(t) = t + \frac{t^2}{2!}$$

$$x_2(t) = t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!}$$

:

and we get by induction that

$$x_n(t) = t + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots + \frac{t^{2n}}{(2n)!}$$

for $n \geq 1$. Since d_{∞} -convergence implies convergence for each $t \in [0, 1]$, we get that

$$x^*(t) = \sum_{n=1}^{\infty} \frac{t^n}{n!} = e^t - 1.$$

(It is also true that $F^n x_0 \to x^*$ as $n \to \infty$.)

Problem 2

Here $A^T A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and the eigenvalues are $\lambda_1 = 3$, $\lambda_2 = 1$ with corresponding orthonormal eigenvectors

$$v_{(1)} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} , \quad v_{(2)} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}.$$

Hence

$$\Sigma = \begin{bmatrix} \sqrt{3} & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix} \quad \text{and} \quad V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

Next:

$$u_{(1)} = \frac{1}{\sqrt{3}} A v_{(1)} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
 and $u_{(2)} = \frac{1}{\sqrt{1}} A v_{(2)} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$.

Let

$$B = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

and solve Bx = 0. This gives x = t(1, -1, 1), and we let

$$u_{(3)} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}.$$

Then

$$U = \begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix},$$

and a singular value decomposition of A is $A = U\Sigma V^T$.

The pseudo inverse of A is then

$$A^{+} = V \begin{bmatrix} 1/\sqrt{3} & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} U^{T} = \frac{1}{3} \begin{bmatrix} 2 & 1 & -1\\ -1 & 1 & 2 \end{bmatrix},$$

and the (unique) least squares solution of Ax = (2, 1, 2) is

$$\hat{x} = A^+ \begin{bmatrix} 2\\1\\2 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}.$$

Problem 3

a) The characteristic polynomial of A is

$$P_A(\lambda) = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ 0 & 2 - \lambda & 0 \\ 1 & -1 & 1 - \lambda \end{vmatrix} = -(\lambda - 2)^3.$$

Thus $\lambda = 2$ is an eigenvalue of algebraic multiplicity 3. From

$$A - 2I = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

we see that $\lambda = 2$ has geometric multiplicity 2. Hence a Jordan form of A is

$$J = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

The eigenvectors of A are

$$x = \begin{bmatrix} s+t\\s\\t \end{bmatrix}, \quad (s,t) \neq (0,0).$$

We must find $x_{(3)}$ such that $(A - 2I)x_{(3)} = x_{(2)}$ is an eigenvector. From

$$\left[\begin{array}{ccc|c} 1 & -1 & -1 & s+t \\ 0 & 0 & 0 & s \\ 1 & -1 & -1 & t \end{array} \right]$$

we see that this is possible if and only if s = 0, so let s = 0 and t = 1. Then we can use the solution $x_{(3)} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$

with

$$x_{(2)} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}.$$

We can then put s = 1, t = 0. This gives

$$x_{(1)} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

 $(x_{(1)}, x_{(2)}, x_{(3)})$ must be linearly independent.) Hence

. .

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

is such that $S^{-1}AS = J$.

b) The solution is

$$u = e^{tA}u_{0}$$

$$= Se^{tJ}S^{-1}u_{0}$$

$$= S\begin{bmatrix} e^{2t} & 0 & 0\\ 0 & e^{2t} & te^{2t}\\ 0 & 0 & e^{2t} \end{bmatrix} \begin{bmatrix} c_{1}\\ c_{2}\\ c_{3} \end{bmatrix} \qquad (c = S^{-1}u_{0})$$

$$= c_{1}e^{2t}\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + c_{2}e^{2t}\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} + c_{3}e^{2t}\begin{bmatrix} 1+t\\ 0\\ t \end{bmatrix}$$

where $c_1, c_2, c_3 \in \mathbb{R}$.

Problem 4

a) Let $S_N = \sum_{n=1}^N \lambda_n e_n$ and $s_N = \sum_{n=1}^N |\lambda_n|^2$. For M > N we then have (by Pythagoras' Theorem)

$$||S_M - S_N||^2 = \sum_{n=N+1}^M |\lambda_n|^2 = |s_M - s_N|.$$

Thus (S_N) is Cauchy if and only if (s_N) is Cauchy, and the claim follows since both H and \mathbb{R} are complete.

b) Let $M = \text{span}\{1, t\} \subseteq L^2(0, 1)$ (with the usual abuse of notation). Then 1 and $\sqrt{3}(2t-1)$ is an orthonormal basis for M (here $\sqrt{3}(2t-1)$ is $t - \langle t, 1 \rangle$ normalized), and

$$proj_M e^t = \langle e^t, 1 \rangle + \langle e^t, \sqrt{3}(2t-1) \rangle \sqrt{3}(2t-1)$$
$$= e - 1 + 3(\int_0^1 e^t(2t-1)dt)(2t-1)$$
$$= e - 1 + 3(3-e)(2t-1)$$
$$= (4e - 10) + 6(3-e)t,$$

hence a = 4e - 10 and b = 6(3 - e).

Problem 5

a) If $x \in C[0, 1]$ and $y \in M$ we get

$$\begin{aligned} |x - y||^2 &= \int_0^1 |x(t) - y(t)|^2 dt \\ &= \int_0^{\frac{1}{2}} |x(t)|^2 dt + \int_{\frac{1}{2}}^1 |x(t) - y(t)|^2 dt \\ &\ge \int_0^{\frac{1}{2}} |x(t)|^2 dt. \end{aligned}$$

Let $x_n \in M$ such that $x_n \to x$ in C[0,1]. We show that $x \in M$. By the above

$$\int_0^{\frac{1}{2}} |x(t)|^2 dt \le ||x - x_n||^2 \to 0$$

as $n \to \infty$. Hence $\int_0^{\frac{1}{2}} |x(t)|^2 dt = 0$, and since x is continuous we must have x(t) = 0 for $0 \le t \le \frac{1}{2}$, i.e., $x \in M$. Thus M is closed.

b) If $x \in M$, then by **a**)

$$||x-1||^2 \ge \int_0^{\frac{1}{2}} dt = \frac{1}{2},$$

and $||x-1|| \ge \frac{1}{\sqrt{2}}$. If $x_0 \in M$ with $||x_0-1||^2 = \frac{1}{2}$, then

$$\int_{\frac{1}{2}}^{1} |x_0(t) - 1|^2 dt = ||x_0 - 1||^2 - \int_{0}^{\frac{1}{2}} dt = 0$$

and $x_0(t) = 1$ for $\frac{1}{2} \le t \le 1$. This contradicts the continuity of x_0 and no such x_0 can exist.