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Problem 1

a) Banach’s Fixed Point Theorem: Let (X, d), X 6= ∅, be a complete metric space,
and let f : X → X be a contraction. Then f has exactly one fixed point.

b) Since X 6= ∅ is complete and f 2 is a contraction, Banach’s Fixed Point Theorem
gives that f2 has a unique fixed point x∗ ∈ X. Since f2(f(x∗)) = f(f2(x∗)) =
f(x∗), the uniqueness gives that f(x∗) = x∗. Hence x∗ is a fixed point of f as well.
If f(x) = x, then also f2(x) = x, and again by the uniqueness of x∗, x = x∗. Thus
f has exactly one fixed point.

c) For x, y ∈ C[0, 1] and t ∈ [0, 1] we have

|Fx(t) − Fy(t)| = |
∫

t

0
(x(s) − y(s))ds|

≤
∫

t

0
|x(s) − y(s)|ds

≤ (

∫

t

0
ds)d∞(x, y)

= td∞(x, y).

This gives that

|F 2x(t) − F 2y(t)| ≤
∫

t

0
|Fx(s) − Fy(s)|ds

≤ (

∫

t

0
sds)d∞(x, y)

=
1

2
t2d∞(x, y)

≤ 1

2
d∞(x, y).

Hence

d∞(F 2x, F 2y) = max
0≤t≤1

|F 2x(t) − F 2y(t)| ≤ 1

2
d∞(x, y),

and F 2 is a contraction on C[0, 1] with the d∞-metric. By b) F has a unique
fixed point x∗ since (C[0, 1], d∞) is a complete metric space, and we can find x∗ by
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iteration starting from any x0 ∈ C[0, 1]. Let x0 = 0, and let xn+1 = F 2xn. Then

x1(t) = t +
t2

2!

x2(t) = t +
t2

2!
+

t3

3!
+

t4

4!
...

and we get by induction that

xn(t) = t +
t2

2!
+

t3

3!
+ · · · + t2n

(2n)!

for n ≥ 1. Since d∞-convergence implies convergence for each t ∈ [0, 1], we get
that

x∗(t) =
∞

∑

n=1

tn

n!
= et − 1.

(It is also true that F nx0 → x∗ as n → ∞.)

Problem 2

Here AT A = [ 2 1
1 2 ] and the eigenvalues are λ1 = 3, λ2 = 1 with corresponding orthonor-

mal eigenvectors

v(1) =
1√
2

[

1
1

]

, v(2) =
1√
2

[

1
−1

]

.

Hence

Σ =





√
3 0

0 1
0 0



 and V =
1√
2

[

1 1
1 −1

]

.

Next:

u(1) =
1√
3
Av(1) =

1√
6





1
2
1



 and u(2) =
1√
1
Av(2) =

1√
2





1
0

−1



 .

Let

B =

[

1 2 1
1 0 −1

]

and solve Bx = 0. This gives x = t(1,−1, 1), and we let

u(3) =
1√
3





1
−1

1



 .

Then

U =





1/
√

6 1/
√

2 1/
√

3

2/
√

6 0 −1/
√

3

1/
√

6 −1/
√

2 1/
√

3



 ,

and a singular value decomposition of A is A = UΣV T .
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The pseudo inverse of A is then

A+ = V

[

1/
√

3 0 0
0 1 0

]

UT =
1

3

[

2 1 −1
−1 1 2

]

,

and the (unique) least squares solution of Ax = (2, 1, 2) is

x̂ = A+





2
1
2



 =

[

1
1

]

.

Problem 3

a) The characteristic polynomial of A is

PA(λ) =

∣

∣

∣

∣

∣

∣

3 − λ −1 −1
0 2 − λ 0
1 −1 1 − λ

∣

∣

∣

∣

∣

∣

= −(λ − 2)3.

Thus λ = 2 is an eigenvalue of algebraic multiplicity 3. From

A − 2I =





1 −1 −1
0 0 0
1 −1 −1



 ∼





1 −1 −1
0 0 0
0 0 0





we see that λ = 2 has geometric multiplicity 2. Hence a Jordan form of A is

J =





2 0 0
0 2 1
0 0 2



 .

The eigenvectors of A are

x =





s + t
s
t



 , (s, t) 6= (0, 0).

We must find x(3) such that (A − 2I)x(3) = x(2) is an eigenvector. From





1 −1 −1 s + t
0 0 0 s
1 −1 −1 t





we see that this is possible if and only if s = 0, so let s = 0 and t = 1. Then we
can use the solution

x(3) =





1
0
0





with

x(2) =





1
0
1



 .
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We can then put s = 1, t = 0. This gives

x(1) =





1
1
0



 .

(x(1), x(2), x(3) must be linearly independent.) Hence

S =





1 1 1
1 0 0
0 1 0





is such that S−1AS = J .

b) The solution is

u = etAu0

= SetJS−1u0

= S





e2t 0 0
0 e2t te2t

0 0 e2t









c1

c2

c3



 (c = S−1u0)

= c1e
2t





1
1
0



 + c2e
2t





1
0
1



 + c3e
2t





1 + t
0
t





where c1, c2, c3 ∈ R.

Problem 4

a) Let SN =
∑

N

n=1 λnen and sN =
∑

N

n=1 |λn|2. For M > N we then have (by
Pythagoras’ Theorem)

‖SM − SN‖2 =
M
∑

n=N+1

|λn|2 = |sM − sN |.

Thus (SN ) is Cauchy if and only if (sN ) is Cauchy, and the claim follows since
both H and R are complete.

b) Let M = span{1, t} ⊆ L2(0, 1) (with the usual abuse of notation). Then 1 and√
3(2t−1) is an orthonormal basis for M (here

√
3(2t−1) is t−〈t, 1〉 normalized),

and

projMet = 〈et, 1〉 + 〈et,
√

3(2t − 1)〉
√

3(2t − 1)

= e − 1 + 3(

∫ 1

0
et(2t − 1)dt)(2t − 1)

= e − 1 + 3(3 − e)(2t − 1)

= (4e − 10) + 6(3 − e)t,

hence a = 4e − 10 and b = 6(3 − e).
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Problem 5

a) If x ∈ C[0, 1] and y ∈ M we get

‖x − y‖2 =

∫ 1

0
|x(t) − y(t)|2dt

=

∫ 1

2

0
|x(t)|2dt +

∫ 1

1

2

|x(t) − y(t)|2dt

≥
∫ 1

2

0
|x(t)|2dt.

Let xn ∈ M such that xn → x in C[0, 1]. We show that x ∈ M . By the above

∫ 1

2

0
|x(t)|2dt ≤ ‖x − xn‖2 → 0

as n → ∞. Hence
∫

1

2

0 |x(t)|2dt = 0, and since x is continuous we must have x(t) = 0
for 0 ≤ t ≤ 1

2 , i.e., x ∈ M . Thus M is closed.

b) If x ∈ M , then by a)

‖x − 1‖2 ≥
∫ 1

2

0
dt =

1

2
,

and ‖x − 1‖ ≥ 1√
2
. If x0 ∈ M with ‖x0 − 1‖2 = 1

2 , then

∫ 1

1

2

|x0(t) − 1|2dt = ‖x0 − 1‖2 −
∫ 1

2

0
dt = 0

and x0(t) = 1 for 1
2 ≤ t ≤ 1. This contradicts the continuity of x0 and no such x0

can exist.
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