
TMA4155 — Solutions to exercise 2

Kristian Gjøsteen

2006-11-27

Task 1

a. Let (b0,b1,b2,b3,b4,b5,b6,b7) be the block and (k0,k1,k2,k3,k4,k5,k6,k7) be the
key. After round 0 we have the block blokken (b4,b5,b6,b7,b0⊕k0,b1⊕k1,b2⊕k2,b3⊕
k3) and after round 1 we have the block (b0 ⊕k0,b1 ⊕k1,b2 ⊕k2,b3 ⊕k3,b4 ⊕k4,b5 ⊕
k5,b6⊕k6,b7⊕k7). The encryption c of the block b under the key k is simply c = b⊕k.

A known plaintext attack (where we get b and c) trivially reveals the key, since
k = c ⊕b.

b. The key is k = 01010101, giving round keys k(0) = 010101, k(1) = 101010, k(2) =
010101, k(3) = 010101. In diagram form, we get:

0000

⊕ ��

0000

��

�� ''OOOOOO = L0||R0

000
��

000
��

010101⊕
oo

010
��

101
��

S0

��

S1

��
00

��

00
wwooooooo

0000

⊕ ��

0000

��

�� ''OOOOOO = L1||R1

000
��

000
��

101010⊕
oo

101
��

010
��

S0

��

S1

wwooooooo

1111
��

0000 1111 = L2||R2

0000

⊕ ��

1111

��

�� ''OOOOOO = L2||R2

111
��

111
��

010101⊕
oo

101
��

010
��

S0

��

S1

��
11

��

11
wwooooooo

1111

⊕ ��

1111

��

�� ''OOOOOO = L3||R3

111
��

111
��

010101⊕
oo

101
��

010
��

S0

��

S1

wwooooooo

1111
��

1111 0000 = L4||R4

1

To decrypt we do this in the opposite direction.
For the key k = 11111111 all the round keys are k(i) = 111111. Encrypting the

block 00000000 goes as follows:
In round 0 the right hand side expansion gives 000000. Adding the round key

gives 111111, and applying the S-boxes gives 1101 = F (0000,k(0)). We get the block
00001101 after round 0.

In round 1 the right hand side expansion gives 101011. Adding the round key
gives 010100, and applying the S-boxes gives 0011 = F (1101,k(1)). We get the block
11010011 after round 1.

In round 2 the right hand side expansion gives 010101. Adding the round key
gives 101010, and applying the S-boxes gives 1111 = F (0011,k(2)). We get the block
00110010 after round 2.

In round 3 the right hand side expansion gives 010100. Adding the round key
gives 101011, and applying the S-boxes gives 1110 = F (0010,k(3)). We get the block
00101101 after round 3.

We get one attack on the block cipher by observing that in the S-box S0 the second
output bit is always equal to the third input bit. Suppose the key is k = (k0,k1,k2,k3,
k4,k5,k6,k7) and the block is b(0) = (b(0)

0 ,b(0)
1 ,b(0)

2 ,b(0)
3 ,b(0)

4 ,b(0)
5 ,b(0)

6 ,b(0)
7). Then after

round i , where the input block is b(i) and the output block is b(i+1), we have

b(i+1)
5 = b(i)

1 ⊕b(i)
5 ⊕k(i)

2 .

Because of the Feistel structure we have that b(i+1)
1 = b(i)

5 . Therefore, b1 and b5 are
never influenced by the other input bits.

Now we can track the evolution of these two bits through the cipher. After round
0 we get that b(1)

5 = b(0)
1 ⊕b(0)

5 ⊕k2.

After round 1 we get that b(2)
5 = b(0)

5 ⊕ (b(0)
1 ⊕b(0)

5 ⊕k2)⊕k3 = b(0)
1 ⊕k2 ⊕k3.

After round 2 we get that b(3)
5 = (b(0)

1 ⊕b(0)
5 ⊕k2)⊕(b(0)

1 ⊕k2⊕k3)⊕k4 = b(0)
5 ⊕k3⊕k4.

After round 3 we get that b(4)
5 = (b(0)

1 ⊕k2⊕k3)⊕(b(0)
5 ⊕k3⊕k4)⊕k2 = b(0)

1 ⊕b(0)
5 ⊕k4.

When we know b(0)
5 og b(4)

5 , we get the equation k4 = b(0)
5 ⊕b(4)

5 . We also get b(4)
1 =

b(3)
5 = b(0)

5 ⊕k3 ⊕k4.
This gives us two equations with two unknowns (k3 and k4). Then we can search

through the remaining six bits to find the correct key. This reduces the work load to
26 key trials, a significant improvement on an exhaustive search of 28 keys.

Task 2

a. The inverse table for SB is:

2

b2b3 \b0b1 00 01 10 10
00 1010 0110 1100 0001
01 1110 0101 1001 0010
10 0011 0100 1101 1111
11 0111 1000 0000 1011

The inverse rearrangement for SR is:m00 m01 m02

m10 m11 m12

m20 m21 m22

 7→
m00 m01 m02

m12 m10 m11

m21 m22 m20


The inverse operation for MC is:m00 m01 m02

m10 m11 m12

m20 m21 m22

 7→
 m00 m01 m02

m00 ⊕m10 m01 ⊕m11 m02 ⊕m12

m10 ⊕m20 m11 ⊕m21 m12 ⊕m22


On matrix form, we can write this asm00 m01 m02

m10 m11 m12

m20 m21 m22

 7→
1 0 0

1 1 0
0 1 1

m00 m01 m02

m10 m11 m12

m20 m21 m22


The decryption operations are: ARK (2), SR−1, SB−1, ARK (1), MC−1, SR−1, SB−1,

ARK (0).

b. Map the nibble (b0,b1,b2,b3) to the number b023+b122+b221+b320 ∈ {0,1, . . . ,15},
and write this number as a hexadecimal digit, where 10 is A, 11 is B , . . . , and 15 is F .
The round keys are

K0 =
2 2 2

2 2 2
2 2 2

 , K1 =
D D D

B B B
D D D

 , K2 =
A A A

4 4 4
F F F

 .

We proceed with the encryption operations:0 0 0
0 0 0
0 0 0

 ARK 0→
2 2 2

2 2 2
2 2 2

 SB→
D D D

D D D
D D D


SR→

D D D
D D D
D D D

 MC→
D D D

0 0 0
D D D

 ARK 1→
0 0 0

B B B
0 0 0


SB→

B B B
F F F
B B B

 SR→
B B B

F F F
B B B

 ARK 2→
1 1 1

B B B
4 4 4


3

c. The idea is that the nibbles on the top row are only touched by ARK (i) and SB ,
and those operations apply independently to each nibble. Therefore, we can analyse
the block cipher action on these nibbles independently.

Further we note that the part of the round key exclusive-ored to these three nib-
bles are derived just from the corresponding key nibbles. So the action on each of
the three nibbles is solely determined by the the corresponding key nibble, so we can
search for each key nibble independently. Therefore, three searches through 16 pos-
sibilities give us 12 key bits. While we could continue the analysis, searching for the
remaining 24 bits is easy.

Task 3

a. Diagram for ECB mode decryption:

fk

m0 m2 m3m1

c0 c3c1 c2

fkfkfk

Diagram for CBC mode decryption:

fk

m0

c0IV

m1

c1

m2

c2

m3

c3

fkfkfk

b. Every time Alice sends a given command, the ciphertext is the same. So Eve ob-
serves the command sent and notes it to the action performed the next day. The next
time Eve sees the command, she will know what action Bob performs the next day.

The simplest countermeasure is to encrypt the command using CBC mode. Then
every ciphertext will be different, even if they decrypt to the same command.

4

