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Exercise set 11

You find solutions to the following exercises on the web page. Give it a try
and ask if something is unclear:
J.S.: 11.5

Exam 1996, 1 Given the system

ẋ = x− y
ẏ = x2 − 1.

a) Find and classify all equilibrium points of the system. Sketch the phase diagram.

b) Does there exist a closed phase path surrounding all equilibrium points?

Exam 1996, 6 Compute the index of the origin for the following systems

a)

ẋ = x

ẏ = −y.
b)

ẋ = x+ x4 + y5

ẏ = −y + xy3.

Exam 2002, 3 a) State Bendixson’s negative criterion.

b) Determine whether or not the following system has non-constant periodic solu-
tions.

ẋ = y

ẏ = −x− y(1 + x2 + x4).

c) Given the population model

ẋ = xF (x, y)

ẏ = yG(x, y),

where F and G are C1 functions. Assume that ∂F
∂x < 0 and ∂G

∂y < 0. Show that
there are no closed phase paths in the first quadrant.
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Exercise set 11

These exercises will be supervised / discussed in the exercise class:

E31 a) Show that the system

ẋ = x− y − x3

ẏ = x+ y − y3

has a closed phase path inside the region

Aa,b = {(x, y) | a ≤ x2 + y2 ≤ b, 0 < a < 1, b > 2}.

b) Consider the system in a) for the region A 3
4
,3. Explain why the result in a) does

not contradict Bendixson’s negative criterion.

E32 Given the system

ẋ = x+ y − x
√
x2 + y2 (1)

ẏ = −x+ y − y
√
x2 + y2.

a) Classify the equilibrium point (0, 0) for both (1) and its linearisation.

b) Show that the system has exactly one closed phase path.

c) Define what it means to be a Poincaré map with Poincaré section Σ.

d) Determine the Poincaré map with Poincaré section Σ = {(x, 0) | x > 0}.

E33 a) Given the autonomous two-dimensional system ẋ = f(x), where f : R2 7→ R2

is a Lipschitz function.
Explain which ω-limit sets a phase path Γ can have if Γ lies inside a closed,
bounded subset K of R2.

b) Given the following systems in polar coordinates

ṙ = (1− r2)r2 (2a)

θ̇ = 1 (2b)

and

ṙ = (1− r2)2r (3a)

θ̇ = 1− r2 (3b)

Find and classifiy all possible ω-limit sets and determine whether they are stable
or unstable.

E34 Aim: Understand the connection between the index of an equilibrium point and the
phase diagram close to this equilibrium point.
Sketch an example of a phase diagram around an equilibrium point of index −2, 1,
and 3, respectively.
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