

You find solutions to the following exercises on the web page. Give it a try and ask if something is unclear: J.S: 11.8, 11.9, 11.10, 12.1 (ii)

Exam 1992, 3 Give an example of an n-dimensional, dynamical system (n given and $n \ge 2$)

 $\dot{x} = f(x), \quad x \in \mathbb{R}^n$

such that $f \in C^1(\mathbb{R}^n, \mathbb{R}^n)$, f(0) = 0, $\lim_{t\to\infty} x(t) = 0$ for all solutions, and not all eigenvalues of its linearisation at 0 have strictly negative real part.

These exercises will be supervised / discussed in the exercise class:

E35 Aim: Investigate the bifurcation of the system

$$\dot{x} = x$$
$$\dot{y} = y^2 - \lambda,$$

at $\lambda = 0$.

- a) Sketch the phase diagram for $\alpha < 0$, $\alpha = 0$, and $\alpha > 0$.
- **b)** Draw a stability diagram in that (λ, y) plane for x = 0. What type of bifurcation occurs at $\lambda = 0$?

E36 Aim: Investigate the bifurcation of the system

$$\dot{x} = \mu x - x^2,$$

$$\dot{y} = y(\mu - 2x)$$

- a) Find and classify all equilibrium points of the system.
- b) Obtain the equations of the phase paths and sketch the phase diagrams for different values of μ .
- c) Draw a stability diagram in the (μ, x) plane for y = 0. Find the bifurcation point and determine what type of bifurcation occurs.

E37 Aim: Investigate the bifurcation of the following system in polar coordinates

$$\dot{r} = r(r^2 - \mu r + 1)$$
$$\dot{\theta} = -1,$$

at $\mu = 2$.

- a) Sketch the phase diagram for $\mu < 2$, $\mu = 2$, and $\mu > 2$.
- **b)** What type of bifurcation occurs at $\mu = 2$?

E38 Aim: Investigate the bifurcation of the system

$$\dot{x} = \lambda x + y \tag{1a}$$

$$\dot{y} = x - x^2,\tag{1b}$$

at $\lambda = 0$.

- a) Show that the system (1) for $\lambda = 0$ has a homoclinic phase path by finding its equation.
- b) Sketch the phase diagram for $\lambda < 0$, $\lambda = 0$, and $\lambda > 0$. What happens to the homoclinic phase path from a)?

Exam 2014, 5 a) State the Poincaré Bendixson theorem.

- **b)** Let $\dot{x} = f(x)$ and $\dot{x} = g(x)$ be two systems in \mathbb{R}^2 , where f and g are C^1 functions such that $\langle f(x), g(x) \rangle = 0$. Show that if $\dot{x} = f(x)$ has a periodic solution, then the system $\dot{x} = g(x)$ has at least one equilibrium point.
- **Exam 1995, 6** Let $f: E \mapsto \mathbb{R}^2$ be a C^1 vector field and $E \subset \mathbb{R}^2$ open, such that there exists an annulus A with $A \subset E$. f has no zeros inside A or on the boundary of A, and f points inwards along the boundary of A. Why must A contain at least one closed phase path? Show that if A contains 3 closed phase paths, then at least one of them must be a stable limit cycle.

Exam 2002, 4 Given the dynamical system $\dot{x} = f(x)$, where f belongs to C^1 . Let

$$A = \{ x \in \mathbb{R}^2 \mid 1 \le \|x\| \le 2 \}.$$

Assume that $f(x) \neq 0$ for all x on the boundary of A. Sketch all possible phase diagrams in A under the assumptions that there are neither equilibrium points nor closed phase paths inside A, that the boundaries of A are closed phase paths, and that the boundaries of A either have the same or opposite orientation.