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Solutions exercise 1

From Jordan and Smith, chapter 1

Locate the equilibrium points and sketch the phase diagrams in their neighbourhood.

(1)

(i)

Z—kt=0(k+#0).
Let & = y, then one obtains the system

T =y,

y =k = ky.

Equilibrium points are given where &£ = ¢y = 0. In this case, this holds when
y =0 and x € R is arbitrary.

It follows from the system of equations that

dy _ o _,

dr =z

This differential equation has solution y(x) = kz + C' for some constant C.

We first consider the case k > 0. We see that y > 0 for y > 0 and y < 0
for y < 0. The phase paths are oriented away from the z-axis, and thus the
equilibrium points are unstable. See Figure 1 for a sketch of the phase diagram.
For the case k < 0, the phase paths are oriented towards the z-axis and therefore
the equilibrium points are stable. Try to sketch the phase diagram for k > 0.

T —8zz = 0.

Let © = y to obtain y = 8xy. As in the previous example, the points where
y =0 and x € R are equilibrium points.

The system has solution y(z) = 422 + C for some constant C. By studying the
sign of § we see that the equilibrium points are stable for x < 0 and unstable
for > 0. See Figure 2 for a sketch of the phase diagram.
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Figure 1: Phase diagram of & — k& =0 for k£ > 0
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Figure 2: Phase diagram of & — 8zi =0

(k # 0).

lz| <1

=0 for

(iii) £ =k for |x| > 1 and &

Let & = y to obtain the system of equations

for |x| > 1

|z| < 1.

for

1 is never zero. Further, & =

9

Note that y is zero when |z| < 1. When |z| > 1

0) wherey € (—1,1).

0 when y = 0. The equilibrium points are then given by (v,

= igf + C for
= 0 and |z| > 1, that both z and y are

, for y # 0 and |z| > 1. This gives z(y)

k
some constant C7. We have that when y

dy _
We see that o =

changing and that the corresponding phase paths cross the z-axis. For |z| < 1

we get the trivial solution y(z) = Cb.

See Figure 3 for a sketch of the phase

diagram when k > 0. Try to analyze the case k < 0 by yourself.
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Figure 3: Phase diagram for & = k for |z| > 1 and & = 0 for |z| < 1, where k > 0
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