Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4165 Differential equations and dynamical systems Spring 2018

Solutions exercise 9

3.1 Given a dynamical system

$$\dot{x} = X(x, y),$$
$$\dot{y} = Y(x, y)$$

let p and q be the number of times

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\dot{y}}{\dot{x}} = \frac{Y(x,y)}{X(x,y)}$$

changes from, respectively, ∞ to $-\infty$, and from $-\infty$ to ∞ . Then the index of the critical point P inside a counterclockwise oriented curve C is given by

$$I(P) = \frac{1}{2}(p-q).$$
 (1)

Alternatively, we can use the Bendixson's index formula (see the note [H] chapter 5) given by,

$$I(P) = 1 + \frac{e-h}{2} \tag{2}$$

where e is the number of elliptical sectors and h is the number of hyperbolic sectors.

(i) We find p = q = 1. Then we get by equation (1), I(P) = 0. We can also use Bendixson's index formula, e = 0 and h = 2 to get I = 0. See figure 1 for an illustration.

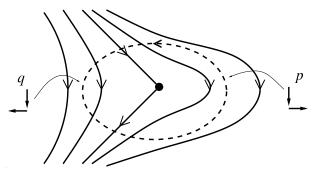


Figure 1: Phase diagram of a dynamical system where I(P) = 0.

(ii) We find p = q = 1 so that I(P) = 0. Using the notation in equation (2) we find e = 0 and h = 2 which gives I(P) = 0.

- (iii) Here, p = 3 and q = 1 which gives I(P) = 1. Using Bendixsons's index formula gives the same result, with h = e = 2.
- (iv) We find p = 2 and q = 0. Equation (1) gives I(P) = 1. Using Bendixsons's index formula gives the same result, with h = e = 1.
- (v) We find p = 0 and q = 4. Equation (1) gives I(P) = -2. Using Bendixsons's index formula gives the same result, with h = 6 and e = 0.

3.3 Find the index of the equilibrium points of the following systems

(i)
$$\dot{x} = 2xy$$
, (ii) $\dot{x} = y^2 - x^4$, (iii) $\dot{x} = x - y$, $\dot{y} = 3x^2 - y^2$. $\dot{y} = x^3y$. $\dot{y} = x - y^2$.

(i) The only equilibrium point of this system is at the origin. We find

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - y^2}{2xy} = \frac{3x}{2y} - \frac{y}{2x}.$$
(3)

We put a test square C around the origin passing through the points (1, 1), (-1, 1), (-1, -1) and (1, -1).

Along the line from (1, 1) to (-1, 1), equation (3) changes sign from $-\infty$ to ∞ one time. Similarly, equation (3) changes sign from $-\infty$ to ∞ one time along each of the four lines. This means that p = 0 and q = 4 and so the index is I(0,0) = -2.

See figure 2 for a sketch of the phase diagram.

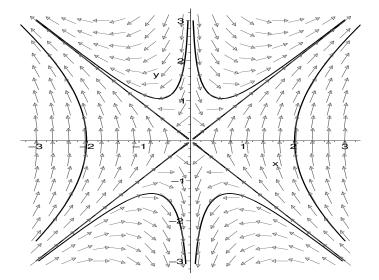


Figure 2: Phase diagram of $\dot{x} = 2xy$, $\dot{y} = 3x^2 - y^2$

(ii) Again, the origin is the only equilibrium point. We have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3 y}{y^2 - x^4}.\tag{4}$$

We put a test square C about the origin passing through the points. (1,1), (-1,1), (-1,-1) and (1,-1).

We find that equation (4) changes sign from $-\infty$ to ∞ one time on each of the four lines of the square. This means that p = 0 and q = 4, so the index is I(0,0) = -2.

See figure 3 for a sketch of the phase diagram.

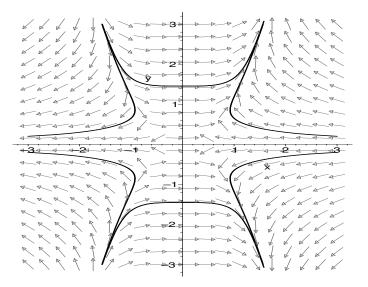


Figure 3: Phase diagram of $\dot{x} = y^2 - x^4$, $\dot{y} = x^3 y$

(iii) Here, there are two equilibrium points, namely (0,0) and (1,1). The matrix of linearization is given by

$$A = \begin{bmatrix} 1 & -1 \\ 1 & -2y \end{bmatrix}$$

at the point (x, y).

The eigenvalues of A at the origin can be found by solving the system $-\lambda(1 - \lambda) + 1 = 0$ which gives $\lambda = \frac{1}{2} \pm +\frac{\sqrt{3}}{2}i$. This is an unstable spiral and so the index at the origin is I(0,0) = 1.

The eigenvalues of A at (1,1) can be found by solving $(1-\lambda)(-2-\lambda)+1=0$. This gives $\lambda = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$. This is a saddle point, so I(1,1) = -1.

See figure 4 for a sketch of the phase diagram.

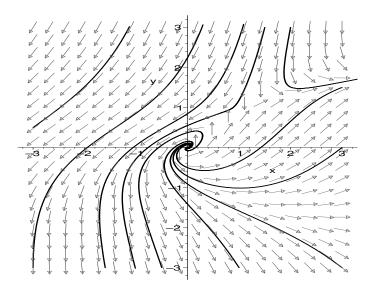


Figure 4: Phase diagram of $\dot{x} = x - y$, $\dot{y} = x - y^2$

Exam 1995, 1 (a) Determine if the following system is stable or unstable at the origin.

$$\dot{x} = e^{-x-3y} - 1,$$

 $\dot{y} = x(1-y^2).$

The matrix of linearization is given by

$$J = \begin{bmatrix} -1 & -3\\ 1 & 0 \end{bmatrix}$$

at the origin. We find the eigenvalues of J as a solution to the equation $\lambda^2+\lambda+3=0.$ Hence

$$\lambda = \frac{-1 \pm \sqrt{-11}}{2} = -\frac{1}{2} \pm \frac{\sqrt{11}}{2}i.$$

This gives a stable spiral, both in the linear and the original system, so the origin is stable.

b) Given the system

$$\dot{x} = x - y,$$

$$\dot{y} = 1 - xy.$$

Find and characterize the equilibrium points. Sketch the phase diagram with orientation.

Setting $\dot{x} = \dot{y} = 0$ gives x = y from the first equation. Inserting this into the second equation gives us the equilibrium points (-1, -1) and (1, 1). The matrix of linearization is given by

$$J = \begin{bmatrix} 1 & -1 \\ -y & -x \end{bmatrix}$$

at the point (x, y). The eigenvalues of J are given as solutions to the equation $\lambda^2 + (x-1)\lambda - (x+y) = 0$. This gives

$$\lambda = \frac{1 - x \pm \sqrt{(1 - x)^2 + 4(x + y)}}{2}$$

At the point (-1, -1), $\lambda = 1 \pm i$. Hence, both in the original and the linear system, we have an unstable spiral. The direction of the spiral is counterclockwise, which we find from studying the sign of \dot{x} when y < 0.

At the point (1,1), $\lambda_{\pm} = \pm \sqrt{2}$. Hence we have an unstable saddle in the linear system, and also in the nonlinear system. The eigenvectors are given by

$$\mathbf{x}_{\pm} = \begin{bmatrix} 1 \\ 1 - \lambda_{\pm} \end{bmatrix}$$

giving us the asymptotes of the phase paths. See figure 5 for a sketch of the phase diagram.



Figure 5: Phase diagram of $\dot{x} = x - y, \dot{y} = 1 - xy$

1.16 The system $\ddot{x} + x = -F_0 \operatorname{sgn}(\dot{x}), F_0 > 0$, has initial conditions $x(0) = x_0$ and $\dot{x}(0) = 0$ with $x_0 > 0$. Show that the phase path will spiral *n* times before entering equilibrium if

$$(4n-1)F_0 < x_0 < (4n+1)F_0.$$

The phase paths are described by the equations $y^2 + (x + F_0)^2 = C$ for y > 0 and $y^2 + (x - F_0)^2 = C$ for y < 0. (See page 33 in the book.)

We start at $(x_0, 0)$. Since $\dot{y} = -x$ we move downwards from this point, so that y is negative. We follow the path $y^2 + (x - F_0)^2 = (x_0 - F_0)^2$ until we hit the x-axis in $(\tilde{x}_1, 0)$ where $(\tilde{x}_1 - F_0)^2 = (x_0 - F_0)^2$. From this we get $\tilde{x}_1 = 2F_0 - x_0$. Similarly, we now move through the upper half plane described by $y^2 + (x + F_0)^2 = (\tilde{x}_1 + F_0)^2 =$

 $(3F_0 - x_0)^2$, until we hit $(x_1, 0)$ after one round. Here, $(x_1 + F_0)^2 = (3F_0 - x_0)^2$, so that $x_1 = x_0 - 4F_0$. By induction,

$$x_n = x_0 - 4nF_0.$$

On the x-axis, between $-F_0$ and F_0 , there will be equilibrium - see figure 6. After n spirals we enter equilibrium provided

$$-F_0 < x_0 - 4nF_0 < F_0,$$

which can be rearranged to give the desired inequality.

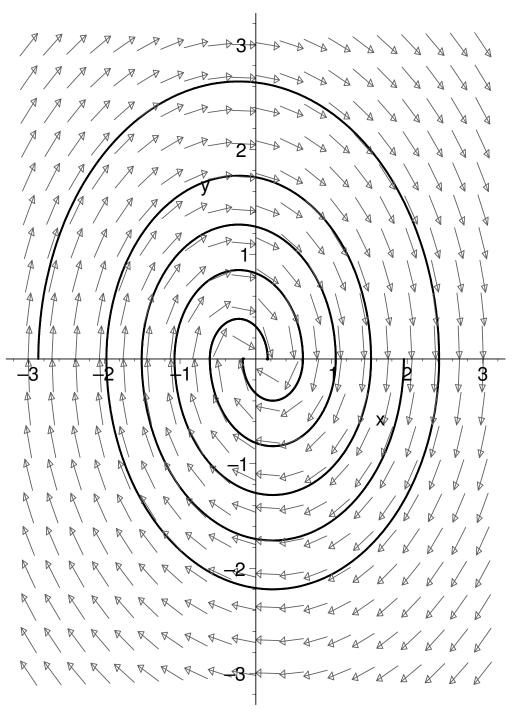


Figure 6: Phase diagram of $\ddot{x} + x = -F_0 \operatorname{sgn}(\dot{x})$ for $F_0 = \frac{9}{40}$