Norwegian University of Science
and Technology

Department of Mathematical
Sciences

TMA4165 Differential

equations and
dynamical systems
Spring 2018

Solutions exercise 9

m Given a dynamical system

&= X(x,y),
y=Y(z,y)
let p and ¢ be the number of times

dy g Y(z,y)

dr & X(x,9)
changes from, respectively, oo to —oo, and from —oo to co. Then the index of the
critical point P inside a counterclockwise oriented curve C' is given by

1

I(P)=5(p—a). (1)

Alternatively, we can use the Bendixson’s index formula( see the note [H] chapter 5)

given by,
e—h
2
. ®)

where e is the number of elliptical sectors and A is the number of hyperbolic sectors.

I(P)=1+

(i) We find p = ¢ = 1. Then we get by equation (1), I(P) = 0. We can also use
Bendixson’s index formula, e = 0 and h = 2 to get I = 0. See figure 1 for an
illustration.

Figure 1: Phase diagram of a dynamical system where I(P) = 0.

(ii) We find p = ¢ = 1 so that I(P) = 0. Using the notation in equation (2) we find
e =0 and h = 2 which gives I(P) = 0.
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(iii) Here, p = 3 and ¢ = 1 which gives I(P) = 1. Using Bendixsons’s index formula
gives the same result, with h = e = 2.

(iv) We find p = 2 and ¢ = 0. Equation (1) gives I(P) = 1. Using Bendixsons’s
index formula gives the same result, with h = e = 1.

(v) We find p = 0 and ¢ = 4. Equation (1) gives I(P) = —2. Using Bendixsons’s
index formula gives the same result, with h = 6 and e = 0.

3.3| Find the index of the equilibrium points of the following systems

(i) 4= 2wy, (i) @ =y?— a2, (iii) &=z —y,
y:3x2—y2. y'::ESy. y:x—yQ.

(i) The only equilibrium point of this system is at the origin. We find

dy 322—¢®> 3z Y
e (3)

de 22y 2y 22
We put a test square C' around the origin passing through the points (1,1),
(_17 1)7 (_17 _1) and (17 _1)'

Along the line from (1,1) to (=1, 1), equation (3) changes sign from —oo to 0o
one time. Similarly, equation (3) changes sign from —oo to oo one time along
each of the four lines. This means that p = 0 and ¢ = 4 and so the index is
1(0,0) = —2.

See figure 2 for a sketch of the phase diagram.

A O . S Sy 74

Figure 2: Phase diagram of & = 2xy, 7 = 322 — ¢
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(ii) Again, the origin is the only equilibrium point. We have

dy _ %

(4)

de  y2 —at’

We put a test square C about the origin passing through the points. (1,1),
(_17 1)) (_17 _1) and (17 _1)

We find that equation (4) changes sign from —oo to oo one time on each of
the four lines of the square. This means that p = 0 and ¢ = 4, so the index is
1(0,0) = —2.

See figure 3 for a sketch of the phase diagram.

Figure 3: Phase diagram of & = y? — 2%, § = 23y

(iii) Here, there are two equilibrium points, namely (0,0) and (1,1). The matrix of
linearization is given by
1 -1
A= L —Qy]
at the point (x,y).
The eigenvalues of A at the origin can be found by solving the system —\(1 —
A) + 1 = 0 which gives A = % + +§i. This is an unstable spiral and so the

index at the origin is 1(0,0) = 1.

The eigenvalues of A at (1,1) can be found by solving (1 —A)(—=2—X)+1=0.
This gives A = —% + é This is a saddle point, so I(1,1) = —1.

See figure 4 for a sketch of the phase diagram.
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Figure 4: Phase diagram of & =2 —y, § = = — y°

Exam 1995, 1 ‘ (a) Determine if the following system is stable or unstable at the origin.

i=e W1,
y=a(l—1°).

The matrix of linearization is given by
-1 -3
=[]
at the origin. We find the eigenvalues of J as a solution to the equation A% +

A+ 3 =0. Hence
_ -1+ V-11 — _1 + \/jl
2 2 2
This gives a stable spiral, both in the linear and the original system, so the
origin is stable.

A

Given the system
T=x—1Y,
y=1—ay.

Find and characterize the equilibrium points. Sketch the phase diagram with
orientation.

Setting & = ¢y = 0 gives x = y from the first equation. Inserting this into the
second equation gives us the equilibrium points (=1, —1) and (1, 1). The matrix
of linearization is given by
1 -1
J= [ ] |
—y —x
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at the point (z,y). The eigenvalues of J are given as solutions to the equation
A2+ (x —1)A — (x +y) = 0. This gives

N\ l—z+/(1—-2)2+4(z+vy)
5 :

At the point (—1,—1), A = 1 +i. Hence, both in the original and the linear
system, we have an unstable spiral. The direction of the spiral is counterclock-
wise, which we find from studying the sign of & when y < 0.

At the point (1,1), A+ = /2. Hence we have an unstable saddle in the linear
system, and also in the nonlinear system. The eigenvectors are given by

. — 1
+ = 1— Xt

giving us the asymptotes of the phase paths. See figure 5 for a sketch of the
phase diagram.
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Figure 5: Phase diagram of t =z —y,y =1 — zy

1.16| The system & + z = —Fp sgn(&), Fy > 0, has initial conditions z(0) = z¢ and
#(0) = 0 with xg > 0. Show that the phase path will spiral n times before entering
equilibrium if
(4n — 1)Fy < 29 < (4n + 1) Fp.

The phase paths are described by the equations y? + (z + Fy)? = C for y > 0 and
y? + (z — Fy)? = C for y < 0. (See page 33 in the book.)

We start at (xg,0). Since § = —x we move downwards from this point, so that y is
negative. We follow the path 32 + (z — Fy)? = (zg — Fp)? until we hit the x-axis in
(#1,0) where (71 — Fy)? = (w9 — Fp)?. From this we get #; = 2Fy — x¢. Similarly, we
now move through the upper half plane described by y? + (x + Fy)? = (&1 + Fp)? =
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(3Fy — x0)?, until we hit (21,0) after one round. Here, (21 + Fy)? = (3Fy — x0)?, so
that z1 = zg — 4Fy. By induction,

T, = x9 — 4nkFy.

On the z-axis, between —Fy and Fy, there will be equilibrium - see figure 6. After
n spirals we enter equilibrium provided

—Fy < xp —4nky < Fy,

which can be rearranged to give the desired inequality.
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Figure 6: Phase diagram of & + x = —F} sgn(&) for Fy = 4%
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