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Solutions exercise 11

11.5 Show that the origin is a centre for the equations

ẍ− xẋ+ x = 0,

ẍ+ xẋ+ sinx = 0.

The first equation may be written

ẍ+ f(x)ẋ+ g(x) = 0,

where f(x) = −x and g(x) = x. Both f and g are odd functions, f(x) < 0 for x > 0,
g(x) > 0 for x > 0, and

g(x) = x > αf(x)

∫ x

0
f(u)du = α

x3

2

for a fixed α > 1 if we are close enough to x = 0. For example, if we choose α = 4
the equation holds for x < 1

2 . By theorem 11.3, the origin is a centre.

Similarly, we can write the second equation with f(x) = x and g(x) = sin(x). Both
f and g are odd functions, f does not change sign for positive x, and

g(x) = sin(x) > αf(x)

∫ x

0
f(u)du = α

x3

2

for α > 1 and 0 < x < ε if we choose ε small enough. In this domain, we also have
g(x) > 0 for x > 0. By theorem 11.3, the origin is a centre.

1996,1 Given the system

ẋ = x− y
ẏ = x2 − 1.

a) Find and classify all equilibrium points of the system. Sketch the phase dia-
gram.

April 4, 2018 Page 1 of 3
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b) Does there exist a closed phase path surrounding all equilibrium points?

a) The equilibrium points are given when x = y and x2 − 1 = 0. Hence, the
equilibrium points are (−1,−1) and (1, 1). The matrix of linearization is given by

J =

[
1 −1

2x 0

]
.

At the point (1, 1) we find λ = 1
2 ±

√
7
2 i. Hence, the point (1, 1) is an unstable

spiral. At the point (−1,−1) we find λ± = 1
2 ±

3
2 , so (−1,−1) is a saddle point. The

corresponding eigenvectors are

v+ =

[
1
2

]
, v− =

[
1
−1

]
.

See figure 1 for a sketch of the phase diagram.
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Figure 1: Phase diagram of ẋ = x− y, ẏ = x2 − 1

b) The index of a curve surrounding both the equilibrium points found in a) is 0.
Closed paths have index I = 1, whence there are no closed path surrounding all
equilibrium points. Alternatively, by Bendixson’s negative criterion:

∂

∂x
(x− y) +

∂

∂y

(
x2 − 1

)
= 1.

This does not change sign in R2 so the there are no closed paths.

Exam 1996, 6 Compute the index of the origin for the following systems

a)

ẋ = x

ẏ = −y.
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b)

ẋ = x+ x4 + y5

ẏ = −y + xy3.

a) Written out in matrix form, the system is

ẋ =

[
1 0
0 −1

]
x

The matrix has eigenvalues 1 and −1, so the origin is a saddle point. The index at
the origin is I = −1.
b) The matrix found in a) is the linearization of this system since x4 + y5 = O(|x|4)
and xy3 = O(|x|4). Hence, (0, 0) is a saddle point and I = −1.

2002,3 a) State Bendixson’s negative criterion.

b) Determine whether or not the following system has non-constant periodic so-
lutions.

ẋ = y

ẏ = −x− y(1 + x2 + x4).

c) Given the population model

ẋ = xF (x, y)

ẏ = yG(x, y),

where F and G are C1 functions. Assume that ∂F
∂x < 0 and ∂G

∂y < 0. Show that
there are no closed phase paths in the first quadrant.

a)

Bendixsons negative criterion says that given ẋ = X(x, y) and ẏ = Y (x, y), if

∇(X,Y ) =
∂X

∂x
+
∂Y

∂y

is of one sign in a simply connected domain, there are no periodic paths.

b) We calculate

∂

∂x
(y) +

∂

∂y

(
−x− y(1 + x2 + x4)

)
= 1 + x2 + x4 > 0.

By Bendixson’s negative criterion, there cannot exists a closed path.

c) We use exercise 3.23 with ρ(x, y) = 1
xy . Then

∂

∂x
(ρxF ) +

∂

∂y
(ρyG) =

1

y
Fx +

1

x
Gy < 0

in the first quadrant, which shows that there are no closed paths.
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