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Solutions exercise 12

Exam 1996, 6 Compute the index of the origin for the following systems

a)

ẋ = x

ẏ = −y.

b)

ẋ = x+ x4 + y5

ẏ = −y + xy3.

a) Written out in matrix form, the system is

ẋ =

[
1 0
0 −1

]
x

The matrix has eigenvalues 1 and −1, so the origin is a saddle point. The index at
the origin is I = −1.
b) The matrix found in a) is the linearization of this system since x4 + y5 = O(|x|4)
and xy3 = O(|x|4). Hence, (0, 0) is a saddle point and I = −1.

Exam 1999, 5 Given the system

ẋ = x+ y − x
√
x2 + y2 (1)

ẏ = −x+ y − y
√
x2 + y2.

a) Classify the equilibrium point (0, 0) for both (1) and its linearisation.

b) Show that the system has exactly one closed phase path.

c) Define what it means to be a Poincaré map with Poincaré section Σ.

d) Determine the Poincaré map with Poincaré section Σ = {(x, 0) | x > 0}.

a) Since x
√
x2 + y2 = O(|x|2), y

√
x2 + y2 = O(|x|2) we have the linearization

ż =

[
1 1
−1 1

]
z
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at the origin. The matrix has eigenvalues λ = 1 ± i. This is an unstable spiral in
both the original and the linear system.

b) We use polar coordinates, r = x2 + y2, tan θ = y
x to solve the problem. We find

2rṙ = 2xẋ+ 2yẏ = 2(x2 + y2)− 2(x2 + y2)
√
x2 + y2 = 2r2(1− r)

and

θ̇ =
ẏx− ẋy
r2

= −1.

We see that we have a periodic solution when r = 1, the unit circle. Further, this is
the only periodic solutions, since for r < 1 we have ṙ > 0 and for r > 1, ṙ < 0. See
figure for a sketch of the phase diagram.
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Figure 1: Phase daigram of ẋ = x+ y − x
√
x2 + y2, ẏ = −x+ y − y

√
x2 + y2

c) Let Σ be a curve or cross section of the (x, y)− plane with the property that
it cuts each phase path transversly in some region of the phase diagram, so that
it is nowhere tangential to a phase path. Then Σ is called the Poincaré section of
the phase diagram. If A0 is a point on Σ, we follow the phase path through A0 in
the direction of flow until it again hits Σ in a point A1. This point is called the
Poincaré-map of A0.

d) We solve the differential equations

ṙ = r(1− r),
θ̇ = −1.
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We have ∫ r

r0

dr̂

r̂(1− r̂)
=

∫ t

0
dt̂ which gives r(t) =

r0
r0 + (1− r0)e−t

and ∫ θ

θ0

dθ̂ =

∫ t

0
dt̂ which gives θ(t) = −t+ θ0.

With θ0 = 0 we get θ(t) = −t so that

r(θ) =
r0

r0 + (1− r0)eθ
.

For the given Poincaré section we have r0 = x > 0. The Poincaré-map is then

P (x) = r(−2π) =
x

x+ (1− x)e−2π
.

Exam 1992, 3 Give an example of an n-dimensional, dynamical system (n given and
n ≥ 2)

ẋ = f(x), x ∈ Rn

such that f ∈ C1(Rn,Rn), f(0) = 0, limt→∞ x(t) = 0 for all solutions, and not all
eigenvalues of its linearisation at 0 have strictly negative real part.

The system ẋ = f(x) must have a linearization such that some eigenvalues has real-
part zero, while the remaining eigenvalues are less than zero. For the linearization,
put

ẋ = Ax

where A = aij is given by

aii = λi for i ≥ 3

a12 = 1

a21 = −1

aij = 0 otherwise.

That is, we solve the system

ẋ1 = x2

ẋ2 = −x1
ẋi = λixi.

for i ≥ 3. We manipulate the first two equations to get a nonlinear system. Put

ẋ1 = x2 + x1f(r)

ẋ2 = −x1 + x2f(r).
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We have (
ṙ2
)

= 2r2f(r).

We now choose f(r) so that ṙ < 0, that is f(r) < 0 for all r. This is needed to
ensure limt→∞ x(t) = 0. A suitable choice is f(r) = −r2, and we get the system

ẋ1 = x2 − x1(x21 + x22)

ẋ2 = −x1 − x2(x21 + x22)

ẋi = λixi

for i ≥ 3.

11.5 Show that the origin is a centre for the equations

ẍ− xẋ+ x = 0,

ẍ+ xẋ+ sinx = 0.

The first equation may be written

ẍ+ f(x)ẋ+ g(x) = 0,

where f(x) = −x and g(x) = x. Both f and g are odd functions, f(x) < 0 for x > 0,
g(x) > 0 for x > 0, and

g(x) = x > αf(x)

∫ x

0
f(u)du = α

x3

2

for a fixed α > 1 if we are close enough to x = 0. For example, if we choose α = 4
the equation holds for x < 1

2 . By theorem 11.3, the origin is a centre.

Similarly, we can write the other equation with f(x) = x and g(x) = sin(x). Both f
and g are odd functions, f does not change sign for positive x, and

g(x) = sin(x) > αf(x)

∫ x

0
f(u)du = α

x3

2

for α > 1 and 0 < x < ε if we choose ε small enough. In this domain, we also have
g(x) > 0 for x > 0. By theorem 11.3, the origin is a centre.

11.8 Show that ẍ + β(x2 − 1)ẋ + x3 = 0 has one and only one periodic solution. (We
have to assume β > 0 even though this was not mentioned in the exercise. For β < 0
the system will have an unstable spiral at the origin.)
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We can write the equation as

ẍ+ f(x)ẋ+ g(x) = 0,

where f(x) = β(x2 − 1) and g(x) = x3. If we define

F (x) =

∫ x

0
f(u)du = βx

(
x2

3
− 1

)
,

we see that F is odd, F (x) = 0 if and only if x = 0 and x = ±
√

3, F tends to
infinity when x tends to ∞, and g is an odd function satisfying g(x) > 0 for x > 0.
The conditions in theorem 11.4 are satisfied, so the equation has a unique periodic
solution.

11.9 Show that ẍ+ (|x|+ |ẋ| − 1)ẋ+ x|x| = 0 has at least one periodic solution.

We can write the equations as

ẍ+ f(x, ẋ)ẋ+ g(x) = 0

with f(x, ẋ) = |x|+ |ẋ| − 1 and g(x) = x|x|.

We see that f(x, y) = |x| + |y| − 1 > 0 for |x| + |y| > 1, that is for
√
x2 + y2 > 1.

Further, f(0, 0) = −1 < 0, g(0) = 0, g(x) = x|x| > 0 for x > 0 and g(x) = x|x| < 0
for x < 0. We also have

lim
x→∞

G(x) = lim
x→∞

∫ x

0
g(u)du = lim

x→∞
sgn(x)

x3

3
=∞.

The conditions of theorem 11.2 are satisfied, so there exists at least one periodic
solution.

11.10 Show that the origin is a centre for ẍ+ (kẋ+ 1) sinx = 0.

We write the equation as ẍ+ f(x)ẋ+ g(x) = 0 with f(x) = k sinx and g(x) = sinx.

We see that f and g are odd functions, and f does not change sign for positive x in
a neighborhood of the origin. Further, g(x) > 0 for x > 0 in a neighborhood of the
origin.

Finally, we verify
g(x) = sin(x) > αk2 sinx(1− cosx)
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for x small enough holds for an α > 1 since the term (1− cosx) can be made arbi-
trary small enough close to the origin. By theorem 11.3, the origin is a centre for
the equation.

12.1 (ii) We are asked to find the bifurcation points of the system ẋ = A(λ)x where

A(λ) =

[
λ 1− λ
1 λ

]
We find the eigenvalues of A, µ1 and µ2 by solving

(λ− µ)2 − (1− λ) = 0,

which has solution

µ = λ±
√

1− λ.

If λ > 1 we have complex conjugated eigenvalues, which give us an unstable spiral.
If λ < 1 we have real eigenvalues. We check for which values of 0 < λ < 1 gives
positive eigenvalues. For µ2 = λ−

√
1− λ to be positive we need

λ >
√

1− λ > 1− λ,
λ2 > 1− 2λ+ λ2,

λ >
1

2
.

Thus, for 1
2 < λ < 1 we have an unstable node. Similarly, we find that A has both

a positive and a negative eigenvalue for 0 < λ < 1
2 , which is a saddle point. Finally,

for λ < 0, the eigenvalues have opposite sign, so we have a saddle point for λ < 0.
We summarize in the following table.

λ > 1 Unstable spiral
1
2 < λ < 1 Unstable node

0 < λ < 1
2 Saddle

λ < 0 Saddle

The only bifurcation point is the saddle-node bifurcation, for λ = 1
2 .

12.9 The equilibrium points of the system

ẋ = x

ẏ = y2 − λ
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is given by x = 0 and y2 = λ. We see that for negative λ, there are no equilibrium
points. For λ = 0 there is one equilibrium points, at (0, 0). If λ > 0 we have two
equilibrium points, namely (0,−

√
λ), (0,

√
λ).

The matrix of linearization is given by[
1 0

0 ±2
√
λ

]
at the points (0,±

√
λ). We see that (0,

√
λ) is an unstable node, while (0,−

√
λ) is

a saddle point. Hence we have a saddle-node bifurcation and λ = 0 is a bifurcation
point. When giving a sketch for different values of µ, we first see how the vector
fields (ẋ, ẏ) varies in the four quadrants of the (x, y)-plane. See figure 2, 3 and 4 for
a sketch of the phase diagram when λ = −1, λ = 0 and λ = 1.

Figure 2: Phase daigram of ẋ = x, ẏ = y2 − λ when λ = −1.
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Figure 3: Phase daigram of ẋ = x, ẏ = y2 − λ when λ = 0.

Figure 4: Phase daigram of ẋ = x, ẏ = y2 − λ when λ = 1.

12.19 For the system

ẋ = x(µ− x)

ẏ = y(µ− 2x)

we see that there are two equilibrium points, namely (0, 0) and (µ, 0). The matrix
of linearization is given by [

µ 0
0 µ

]
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at the point (0, 0). Hence we see that for µ > 0 we have an unstable node at the
origin, while for µ < 0 the origin is a stable node. Further, the matrix of linearization
is [

−µ 0
0 −µ

]
at the point (µ, 0). Hence, we see that for µ > 0, the point (µ, 0) is a stable node,
while it is an unstable node for µ < 0.

µ = 0 is a transcritical bifurcation point, since then both eigenvalues of the system
is zero. When drawing the phase diagram for different values of µ, it is a good idea
to first give a sketch of how the vector field (ẋ, ẏ) varies when x(µ − x) = 0 and
y(µ− 2x) = 0. See figure 5, 6 and 7 for a sketch of the phase diagram when µ = −1,
µ = 0 and µ = 1.

Figure 5: Phase daigram of ẋ = x(µ− x), ẏ = y(µ− 2x) when µ = −1.
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Figure 6: Phase daigram of ẋ = x(µ− x), ẏ = y(µ− 2x) when µ = 0.

Figure 7: Phase daigram of ẋ = x(µ− x), ẏ = y(µ− 2x) when µ = 1.

12.24 We see that the system

ṙ = r(r2 − µr + 1)

θ̇ = −1

only has one equilibrium point, at the origin. Note that ṙ changes sign if r2−µr+ 1
changes sign. The solution of r2 − µr + 1 = 0 is

r1,2 =
µ

2
±
√
µ2

4
− 1
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which is positive real if |µ| > 2. We write

ṙ = r(r − r1)(r − r2)

where r1, r2 > 0. Note that ṙ > 0 if r1, r2 < r and ṙ < 0 if r1 < r < r2. We see
that the circle with radius r1 centered at (0, 0) is a stable limit cycle, while the circle
with radius r2 centered at (0, 0) is an unstable limit cycle.

For µ < 2 we see that there are no real solutions to ṙ = 0 and we only have to check
one point to see that ṙ > 0 when µ < 2, so we have an unstable spiral.
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