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’ Exam 1996, 6‘ Compute the index of the origin for the following systems

a)

b)
i=x+a*+y°
y=—y+ay’.

a) Written out in matrix form, the system is

10

i= {0 _J z
The matrix has eigenvalues 1 and —1, so the origin is a saddle point. The index at
the origin is I = —1.
b) The matrix found in a) is the linearization of this system since 2% +v° = O(|z|*)
and zy® = O(|z|*). Hence, (0,0) is a saddle point and I = —1.

’Exam 1999, 5‘ Given the system

T=x+y—x\r2+y? (1)
y=—c+y—yva+y>

a) Classify the equilibrium point (0,0) for both (1) and its linearisation.

b) Show that the system has exactly one closed phase path.
c) Define what it means to be a Poincaré map with Poincaré section .

d) Determine the Poincaré map with Poincaré section ¥ = {(z,0) | z > 0}.

a) Since z+/22 + 32 = O(|z|?),y\/22 + 32 = O(]x|?) we have the linearization

April 4, 2018 Page 1 of 11



Solutions exercise 12

at the origin. The matrix has eigenvalues A = 1 4+ ¢. This is an unstable spiral in
both the original and the linear system.

b) We use polar coordinates, r = 22 + 32, tan = % to solve the problem. We find

27 = 20 + 2y = 2(2” + %) — 2(” + ¥ )Va? +y? =27 (1 - 1)
and

—1.
r2

We see that we have a periodic solution when r = 1, the unit circle. Further, this is
the only periodic solutions, since for r < 1 we have 7 > 0 and for r > 1, 7 < 0. See
figure for a sketch of the phase diagram.
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Figure 1: Phase daigram of 1 = v +y — /22 + 92, y = —v +y — y /22 + 12

c) Let ¥ be a curve or cross section of the (z,y)— plane with the property that
it cuts each phase path transversly in some region of the phase diagram, so that
it is nowhere tangential to a phase path. Then ¥ is called the Poincaré section of
the phase diagram. If Ay is a point on X, we follow the phase path through Ag in
the direction of flow until it again hits ¥ in a point A;. This point is called the
Poincaré-map of Ag.

d) We solve the differential equations

r=r(l-r),
0=—1.
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We have

T df t ~ . . To
- = dt which gives r(t) = ;
ro T(L—17) 0 ro+ (1 —rg)e”

and ; .
/ df = / dt which gives 0(t) = —t + 6p.
) 0

With 6y = 0 we get 6(t) = —t so that

r(0) =

"
ro+ (1 —rg)e?”

For the given Poincaré section we have ro = > 0. The Poincaré-map is then

x
z+(1—x)e 2

P(z) =r(-2mr) =

’Exam 1992, 3‘ Give an example of an n-dimensional, dynamical system (n given and

n > 2)
t=f(x), zeR"

such that f € C*(R™,R"), f(0) = 0, lim;_, x(t) = 0 for all solutions, and not all
eigenvalues of its linearisation at 0 have strictly negative real part.

The system & = f(z) must have a linearization such that some eigenvalues has real-
part zero, while the remaining eigenvalues are less than zero. For the linearization,
put

= Ax
where A = q;; is given by

aii:)\i fOl“’iZ?)
a12:1
CL21:—1

a;; =0 otherwise.

That is, we solve the system

:i'l = T2
5.62 = —a

for ¢ > 3. We manipulate the first two equations to get a nonlinear system. Put

& = x2+ 21 f(7)
&g = —x1 + x2f (7).
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We have

(7”2) =212 f(r).

We now choose f(r) so that 7 < 0, that is f(r) < 0 for all ». This is needed to
ensure limy . 2(t) = 0. A suitable choice is f(r) = —r?, and we get the system

T1 = T2 — 951(95% + x%)
B9 = —x1 — T2(x] + 23)

for ¢ > 3.

Show that the origin is a centre for the equations

r—xx+x =0,

T+ xx+sinx = 0.

The first equation may be written
&+ f(z)d +g(z) =0,

where f(z) = —z and g(z) = z. Both f and g are odd functions, f(z) < 0 for z > 0,
g(x) >0 for x > 0, and

x $3
@) = o> af(@) [ flupdu = o

for a fixed o > 1 if we are close enough to x = 0. For example, if we choose o = 4
the equation holds for z < % By theorem 11.3, the origin is a centre.

Similarly, we can write the other equation with f(z) = x and g(x) = sin(z). Both f
and ¢ are odd functions, f does not change sign for positive x, and

ZCS

g(x) =sin(z) > af(z) /wa(u)du =a

for « > 1 and 0 < z < € if we choose € small enough. In this domain, we also have
g(z) > 0 for x > 0. By theorem 11.3, the origin is a centre.

Show that & + $(z% — 1)# + 23 = 0 has one and only one periodic solution. (We
have to assume 8 > 0 even though this was not mentioned in the exercise. For § < 0
the system will have an unstable spiral at the origin.)
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We can write the equation as
&+ f(z)t + g(x) =0,

where f(z) = B(z? — 1) and g(z) = 23. If we define

Fw)= [ rdu=po (g 1),

we see that [ is odd, F(z) = 0 if and only if z = 0 and x = ++/3, F tends to
infinity when z tends to oo, and ¢ is an odd function satisfying g(x) > 0 for 2 > 0.
The conditions in theorem 11.4 are satisfied, so the equation has a unique periodic
solution.

Show that & + (|| + |#| — 1)& + x|z| = 0 has at least one periodic solution.

We can write the equations as
&+ f(z, )z +g(x) =0

with f(z,2) = |z| + |Z] — 1 and g(x) = x|z|.

We see that f(z,y) = || + |y| —1 > 0 for |z| + |y| > 1, that is for \/22 +y2 > 1.
Further, f(0,0) = -1 <0, g(0) =0, g(z) = z|z| > 0 for z > 0 and g(z) = z|z| < 0
for x < 0. We also have

T 3
lim G(z) = lim g(u)du = lim sgn(x)% = 0.

T—00 T—00 0 T—r00

The conditions of theorem 11.2 are satisfied, so there exists at least one periodic
solution.

11.10| Show that the origin is a centre for & + (k& + 1) sinz = 0.
We write the equation as & + f(z)% + g(z) = 0 with f(z) = ksinx and g(z) = sinz.

We see that f and ¢ are odd functions, and f does not change sign for positive x in
a neighborhood of the origin. Further, g(z) > 0 for > 0 in a neighborhood of the
origin.

Finally, we verify
g(x) = sin(z) > ak?sinz(1 — cos x)
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for x small enough holds for an a > 1 since the term (1 — cosx) can be made arbi-
trary small enough close to the origin. By theorem 11.3, the origin is a centre for
the equation.

12.1 (ii) | We are asked to find the bifurcation points of the system & = A(\)z where

AQ):[? 1AA}

We find the eigenvalues of A, p1 and po by solving
A =p)?=(1-X) =0,
which has solution
p=A+v1-M\

If A > 1 we have complex conjugated eigenvalues, which give us an unstable spiral.
If A < 1 we have real eigenvalues. We check for which values of 0 < A < 1 gives
positive eigenvalues. For uo = A — /1 — A to be positive we need

A>VI=A>1-—)
A > 1 —20+ 02

1
A> =
72

Thus, for % < A < 1 we have an unstable node. Similarly, we find that A has both
a positive and a negative eigenvalue for 0 < A < %, which is a saddle point. Finally,
for A < 0, the eigenvalues have opposite sign, so we have a saddle point for A < 0.
We summarize in the following table.

A>1 Unstable spiral
% < A <1 | Unstable node
0< A< % Saddle
A<0 Saddle

The only bifurcation point is the saddle-node bifurcation, for A = %

12.9| The equilibrium points of the system

Tr=x

y=y*—A

April 4, 2018 Page 6 of 11



Solutions exercise 12

is given by = 0 and y> = X\. We see that for negative ), there are no equilibrium
points. For A = 0 there is one equilibrium points, at (0,0). If A > 0 we have two
equilibrium points, namely (0, —v/X), (0, vVX).

The matrix of linearization is given by

E iiﬂ]

at the points (0, £v/X). We see that (0,v/)) is an unstable node, while (0, —v/)) is
a saddle point. Hence we have a saddle-node bifurcation and A = 0 is a bifurcation
point. When giving a sketch for different values of p, we first see how the vector
fields (&, y) varies in the four quadrants of the (x,y)-plane. See figure 2, 3 and 4 for
a sketch of the phase diagram when A = —1, A=0 and A = 1.
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Figure 2: Phase daigram of & = z, = y> — A when A\ = —1.
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Figure 3: Phase daigram of & = x, § = y?> — A when \ = 0.
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Figure 4: Phase daigram of & = z, § = y®> — A\ when \ = 1.
we see that there are two equilibrium points, namely (0,0) and (i,0). The matrix

of linearization is given by

12.19| For the system
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at the point (0,0). Hence we see that for 1 > 0 we have an unstable node at the
origin, while for p < 0 the origin is a stable node. Further, the matrix of linearization

is

—n 0

0 —u
at the point (u,0). Hence, we see that for p > 0, the point (u,0) is a stable node,
while it is an unstable node for u < 0.

w = 0 is a transcritical bifurcation point, since then both eigenvalues of the system
is zero. When drawing the phase diagram for different values of p, it is a good idea
to first give a sketch of how the vector field (#,y) varies when z(u — x) = 0 and
y(p—2x) = 0. See figure 5, 6 and 7 for a sketch of the phase diagram when py = —1,
p=0and p=1.

NAARRAY N AN W b
NN SR R R R R R R AR
NN RN E R R R RN A,
NS SR LN R R R R R A A A A,
NS R R R A A,
NN T EENNE E R R A
NANNAAXY P p Ny LU LSS
A T T T TR TR T B A et VAN U R A A A G G e
NRNRNARNRNNAYN P A A mr—am\ Ny VA A A
SORNRNRRR R A P AN A oo
LG N LY S 7=\ o o o o o a—
————— X X A v —r——a~a g N e et a—a—
PP P | WG o 4V I W \§ S .
s a W Y X N a7 S RN NN S
P AR St B S e S
A A N a2 A B R R D T e
P A A EE RTINS i B T U U NN A NN
KA A AL YN A0 A AN
TN EEEE N o/ U U U U U W M WL NN
A AL A ALy NN—= 772 T AARARRN
KA A A SV NN= 2 TP YRR
AAA A A4 LIV VN7 TR AR
VA B R O R R R N U L s S S W W WL
A A A A A I A S B U T O O O G

Figure 5: Phase daigram of = z(u — ), ¥y = y(u — 22) when p = —1.
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Figure 6: Phase daigram of & = z(u — x), ¥
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Figure 7: Phase daigram of & = z(u — x), ¥

12.24 | We see that the system

r=r(r*—pr+1)

0

—1

only has one equilibrium point, at the origin. Note that 7 changes sign if r2 — pr + 1

changes sign. The solution of 2 — ur +1 =0 is

1,2
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which is positive real if |u| > 2. We write
F=r(r—ry)(r—re)

where 71,79 > 0. Note that 7 > 0 if r,70o < rand » < 0if r{ <7 < ry. We see
that the circle with radius 1 centered at (0,0) is a stable limit cycle, while the circle
with radius ry centered at (0,0) is an unstable limit cycle.

For i < 2 we see that there are no real solutions to 7 = 0 and we only have to check
one point to see that # > 0 when y < 2, so we have an unstable spiral.
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