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1. Limit theorems

One of the main advantages of the Lebesgue integral over the Rie-
mann integral is the availability of limit theorems, which allow us to
calculate or estimate integrals of possibly complicated functions with
mimimal effort.

Theorem 1.1 (Monotone convergence theorem). If fn is a sequence
of non-negative functions and f1 ď f2 ď . . . almost everywhere then the
limit function f “ limn fn satisfies

ş

X
f dµ “ limn

ş

X
fn dµ.

The proof is simply an adaptation of the construction of the integral
of a non-negative measurable function by approximating it with simple
functions.

Notice that we do not assume functions fn to be integrable. The
limit function f is well defined almost everywhere if we allow it to
attain infinite values.

Theorem 1.2 (Fatou Lemma). If fn is a sequence of non-negative
functions then

ż

X

lim inf
n

fn dµ ď lim inf
n

ż

X

fn dµ.

Proof. By denoting

gn “ inf
kěn

fk, f “ lim inf
n

fn,

we obtain gn ď fn, 0 ď g1 ď g2 ď . . . and limn gn “ f . Hence from the
monotone convergence theorem we get

ż

X

fn dµ ě

ż

X

gn dµÑ

ż

X

f dµ,

and then the result follows immediately. �

Example 1.3. Suppose fn “ 1rn,n`1s. Then lim infn fn “ 0, while
ş

R fn dλ “ 1 for every n. This simple example shows that the Fatou
lemma indeed requires an inequality. It is also an easy way to remem-
ber, in which direction the inequality is pointing.

Theorem 1.4 (Lebesgue dominated convergence theorem). Let fn
and g be measurable functions such that

ş

X
g dµ ă 8 and for every n

the inequality |fn| ď g is satisfied almost everywhere. If f “ limn fn
almost everywhere then

lim
n

ż

X

|fn ´ f | dµ “ 0 and

ż

X

f dµ “ lim
n

ż

X

fn dµ.

Proof. Let hn “ |fn ´ f | and h “ 2g. Then hn Ñ 0 almost
everywhere and 0 ď hn ď h. Thus by applying the Fatou lemma to the
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sequence h´ hn, we obtain
ż

X

h dµ “

ż

X

lim inf
n

ph´ hnq dµ ď lim inf
n

ż

X

ph´ hnq dµ

“

ż

X

h dµ ´ lim sup
n

ż

X

hn dµ.

This gives us lim supn
ş

X
hn dµ “ 0, because

ş

X
h dµ ă 8. But be-

casue hn are non-negative we also have lim infn
ş

X
hn dµ “ 0 and so

limn

ş

X
hn dµ “ 0.

Thus we have shown that
ş

X
|fn ´ f | dµÑ 0. Because

ż

X

fn dµ´

ż

X

f dµ ď

ż

X

|fn ´ f | dµ,

the second relation follows from the first. �

Example 1.5. Let X “ r0, 1s and fn “ n1r0,1{ns. Then we have
fn Ñ 0 λ-almost everywhere, but

ş

r0,1s
fn dλ “ 1. The assumption

of “dominated convergence”, appearing in (the very name of) Theo-
rem 1.4 is therefore important.

Corollary 1.6. Let µpXq ă 8 and let functions |fn| ď M for
some number M ě 0. If f “ limn fn almost everywhere then

ş

X
f dµ “

limn

ş

X
fn dµ.

The following theorem tells us that we can use the integral to pro-
duce new measures. When reading the statement below think for ex-
ample of the bell-curve fpxq “ 1?

π
e´x

2
and µ “ λ. In this way we may

define the normal probability distribution N p0, 1q as a measure.

Theorem 1.7. If f is a measurable and non-negative function on
a measure space pX,Σ, µq then the set function ν : Σ Ñ r0,8s given
for every A P Σ by νpAq “

ş

A
f dµ is a measure on Σ.

Proof. By the properties of the integral, we know that ν is an
additive set function on Σ. If An Ò A for some sets An, A P Σ then
1An is a non-decreasing sequence of functions converging to 1A, while
f1An Ñ f1A. By the monotone convergence theorem we thus have

νpAq “

ż

A

f dµ “

ż

X

f1A dµ “ lim
n

ż

X

f1An dµ “ lim
n
νpAnq

Hence ν is continuous from below and thus countably additive (it is a
measure). �

2. Convergence in measure

In this section we consider another notion of convergence for se-
quences of measurable functions. For us, it will only be important in
the proof of completeness of Lp spaces at the end of this part of the
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notes. If you are willing to accept this result without a rigorous proof,
you may skip this section.

Definition 2.1. We say that a sequence of measurable functions
fn : X Ñ R converges in measure to a function f if for every ε ą 0 we
have

lim
nÑ8

µ
`

tx : |fnpxq ´ fpxq| ě εu
˘

“ 0.

In such case we denote fn
µ
ÝÑ f .

Proposition 2.2. A sequence which converges almost uniformly,
converges in measure.

Proof. If functions fn converge to f almost uniformly, then for
every ε ą 0 there exists a set A such that µpAq ă ε and |fnpxq´fpxq| ă
ε for large enough n and all x R A. Thus tx : |fnpxq ´ fpxq| ě εu Ď A
and µ

`

tx : |fnpxq ´ fpxq| ě εu
˘

ď µpAq ă ε. �

Remark 2.3. Let fn : r0, 1s Ñ R denote the sequence

1r0,1s, 1r0,1{2s, 1r1{2,1s, 1r0,1{4s, 1r1{4,1{2s, . . .

We can check that fn converges to 0 in Lebesgue measure, but

lim inf
n

fnpxq “ 0, lim sup
n

fnpxq “ 1 for every x P r0, 1s,

so the sequence doesn’t converge almost uniformly.

Lemma 2.4 (Chebyshev inequality). If f is a measurable function
then for every ε ą 0

ε ¨ µ
`

tx : |fpxq| ě εu
˘

ď

ż

X

|f | dµ.

Proof. Let Aε “ tx : |fpxq| ě εu. Then |f |1Aε ě ε1Aε and
ş

X
|f | dµ ě

ş

Aε
|f | dµ ě εµpAεq �

Theorem 2.5 (Riesz). Let pX,Σ, µq be a finite measure space and
let fn : X Ñ R be a sequence of measurable functions satisfying the
Cauchy condition in measure, i.e.

lim
n,mÑ8

µ
`

tx : |fnpxq ´ fmpxq| ě εu
˘

“ 0

for every ε ą 0. Then

‚ there exists a subsequence npkq P N, such that the sequence of
functions fnpkq is convergent almost everywhere;

‚ the sequence fn converges in measure to some function f .

Proof. Notice that the Cauchy condition we assumed implies that
for every k there exists npkq, such that for any n,m ě npkq we have

µ
`

tx : |fnpxq ´ fmpxq| ě 1{2ku
˘

ď 1{2k,
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and in addition we can take np1q ă np2q ă . . .. Let

Ek “
 

x : |fnpkqpxq ´ fnpk`1qpxq| ě 1{2k
(

, Ak “
ď

něk

En.

Then µpAkq ď 1{2k´1 and hence the set A “
Ş

k Ak has measure zero.
If x R A then for every k such that x R Ak and every i ě k we have

|fnpiq ´ fnpi`1q| ď 1{2i.

It follows from the triangle inequality that for j ą i ě k we have

|fnpiq ´ fnpjq| ď 1{2i´1.

This means that for x R A the numerical sequence fnpiqpxq satisfies the
Cauchy condition and hence converges to a number, which we (unsur-
prisingly) denote as fpxq. In this way we obtain that fnpkq converges
almost everywhere to the fuction f and this proves the first part of the
theorem.

In order to verify the second part it suffices to notice that fn
µ
ÝÑ f ,

which follows from
 

x : |fnpxq ´ fpxq| ě ε
(

Ď
 

x : |fnpxq ´ fnpkqpxq| ě
ε

2

(

Y
 

x : |fnpkqpxq ´ fpxq| ě
ε

2

(

,

and the Cauchy condition for the convergence in measure. �

3. The p-norm and useful inequalities

Lemma 3.1 (Young inequality for products). For any positive num-
bers a, b, p, q, if 1{p` 1{q “ 1 then

ab ď
ap

p
`
bq

q
.

a

b

Figure 1. Young inequality: the rectangle r0, asˆ r0, bs
is covered by the blue and red areas, but there is an
excess of blue, hence the inequality.
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Proof. Consider the function fptq “ tp´1 on the interval r0, as. We
assume p ą 1 therefore f has the inverse function gpsq “ s1{pp´1q. Note
that the areas under the graphs of f : r0, as Ñ R and g : r0, bs Ñ R
cover the rectangle r0, as ˆ r0, bs (see Figure 1).

Thus

ab ď

ż a

0

tp´1 dt`

ż b

0

s1{pp´1q ds “
tp

p

ˇ

ˇ

ˇ

ˇ

a

0

`
sq

q

ˇ

ˇ

ˇ

ˇ

b

0

“
ap

p
`
bq

q
,

because 1` 1{pp´ 1q “ p{pp´ 1q “ q. �

Definition 3.2. For every measurable function (integrable or not)
f : X Ñ R and p ě 1 the expression

}f}p “

ˆ
ż

X

|f |p dµ

˙1{p

is called the p-th integral norm, or p-norm for short, of the function f .

Theorem 3.3 (Hölder inequality). For every pair of functions f, g
and numbers p, q ą 0 such that 1{p ` 1{q “ 1 we have the following
inequality

}fg}1 “

ż

X

|f ¨ g| dµ ď }f}p ¨ }g}q.

Proof. The inequality is obviously true if one of the norms on the
right-hand side is infinite. Otherwise, for a given x P X we substitute

a “
|fpxq|

}f}p
, b “

|gpxq|

}g}q

into the inequality in the previous lemma in order to obtain (for every
x P X)

|fpxq ¨ gpxq|

}f}p ¨ }g}q
ď

1

p
¨
|fpxq|p

}f}pp
`

1

q
¨
|gpxq|q

}g}qq
.

By integrating the last inequality we get
ż

X

|fg| dµ}f}p ¨ }g}q ď 1p` 1q “ 1. �

Theorem 3.4 (Minkowski inequality). For every pair of functions
f, g and a number p ě 1, we have the following inequality

}f ` g}p ď }f}p ` }g}p.

Proof. The inequality is satisfied for p “ 1. For p ą 1 we may
find a number q satisfying the condition 1{p ` 1{q “ 1. Notice that
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pp´ 1qq “ p and p{q “ p´ 1. We use the Hölder inequality to get

}f ` g}pp “

ż

X

|f ` g|p dµ

ď

ż

X

|f | ¨ |f ` g|p´1 dµ`

ż

X

|g| ¨ |f ` g|p´1 dµ

ď }f}p

ˆ
ż

X

|f ` g|pp´1qq dµ

˙
1
q

` }g}p

ˆ
ż

X

|f ` g|pp´1qq dµ

˙
1
q

“
`

}f}p`}g}p
˘

¨

ˆ
ż

X

|f`g|p dµ

˙
1
q

“
`

}f}p`}g}p
˘

¨}f`g}p{qp .

We now divide both sides by }f ` g}
p{q
p and we get result.

Note that in order for this proof to be entirely correct, we need to
verify that }f}p, }g}p ă 8 implies }f ` g}p ă 8. �

So far we defined the integral for real-valued functions, but in the
context of Fourier analysis, we have to deal with complex values. Here
is a technical description of what needs to be done. The take-home
message is: the integral is defined in the most natural way and every-
thing works as expected.

Consider measure spaces pX,Σ, µq and pY,Θ, νq. We may then
define

ΣbΘ “ σ
`

tAˆB : A P Σ, B P Θu
˘

,

which is a σ-field of subsets of X ˆ Y . Similarly, we may define

pµb νqpAˆBq “ µpAq ¨ νpBq,

and show that µ b ν extends to a measure on pX ˆ Y,Σ b Θq. It can
also be shown that

BorpRˆ Rq “ BorpRq b BorpRq.

This allows us to easily consider spaces of functions of complex
values. For a measure space pX,Σ, µq and a function f : X Ñ C we
say that f is measurable if f´1rBs P Σ for every Borel set B Ď C. Here
C may be identified with Rˆ R and so BorpCq “ BorpRq b BorpRq.

We may express such a function as f “ Re f ` i Im f , where Re f
and Im f are real-valued functions. Then f is measurable if and only
if Re f and Im f are measurable.

Hence if f is measurable then its modulus |f | “
a

pRe fq2 ` pIm fq2

is measurable as well. The function f is integrable when
ş

X
|f | dµ ă 8,

while
ż

X

f dµ “

ż

X

Re f dµ` i

ż

X

Im f dµ

defines the integral. The basic properties of the integral remain valid.
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Notice that the p-norms of complex-valued functions may be con-
sidered with the definition unchanged.

4. Banach spaces of p-integrable functions

Recall that a norm on a linear space X is a function } ¨ } : X Ñ C
(or X Ñ R) such that

(1) }x} ě 0 for every x P Rd and }x} “ 0 if and only if x “ 0;
(2) (triangle inequality) }x` y} ď }x} ` }y} for every x, y P X;
(3) (homogeneity) }ax} “ |a|}x} for every x P X and every a P C

(or a P R).

Definition 4.1. A normed space pX, } ¨ }q is called a Banach space
if the metric induced by the norm is complete, i.e. for every sequence
xn P X satisfying the Cauchy condition

lim
n,kÑ8

}xn ´ xk} “ 0,

there exists x P X such that }xn´x} Ñ 0 (x is the limit of the sequece).

The p-norm function }¨}p is in fact a norm: Minkowski inequality is
the triangle inequality for } ¨ }p and homogeneity follows directly from
the properties of the integral.

The only problem is with the first axiom, since }f}p “ 0 is only
equivalent to saying that f “ 0 almost everywhere.

Definition 4.2. For a given measure space pX,Σ, µq, by Lppµq we
denote the space of all measurable functions f : X Ñ R for which
}f}p ă 8. Elements of Lppµq which are equal almost everywhere are
identified as classes of abstraction.

In this way Lppµq equipped with the p-th integral norm becomes
a normed space (strictly speaking, we first have to show it is a linear
space, see Problem 1), but formally speaking it consists not of func-
tions, but classes of abstaction (of functions). Most often. however,
we may still refer to the elements of Lppµq as functions without any
confusion.

It is nonetheless important not to forget about this distinction. For
example, if f is a measurable function and rf s is its class of abstraction
such that f P rf s P Lppλq, then for a chosen point x P R the value rf spxq
is undefined, since a single point has Lebesgue measure zero. In fact,
rf s contains functions attaining all possible values at x.

Notice that if fn Ñ f almost everywhere, then the same is true
for every representative of the respective classes of abstraction, while
it is not true for the actual pointwise convergence (everywhere without
“almost”).

In different contexts, Lppµq may also be denoted by LppX,Σ, µq or
as LppXq. For example, we usually write LppRq or LppTq to refer to
spaces defined using the Lebesgue measure on R or T.
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Theorem 4.3. For every p ě 1 the space Lppµq is a Banach space.

Proof. Consider p “ 1 and let fn P L
1pµq be a Cauchy sequence

in the norm } ¨ }1, that is

lim
n,kÑ8

ż

X

|fn ´ fk| dµ “ 0.

Then for ε ą 0 it follows from the Chebyshev inequality that
ż

X

|fn ´ fk| dµ ě ε ¨ µ
´

 

x : |fnpxq ´ fkpxq| ě ε
(

¯

,

which means that fn is a Cauchy sequence in measure.
It follows from the Riesz theorem that there exists an increasing

sequence nk P N and a function f such that fnk
Ñ f almost everywhere.

On the other hand, the Fatou lemma gives us
ż

X

|f | dµ ď lim inf
k

ż

X

|fnk
| dµ ă 8,

because the Cauchy condition implies that the sequence of integrals
ş

X
|fn| dµ is bounded.
Using the Fatou lemma once again we obtain

ż

X

|f ´ fnk
| dµ “

ż

X

lim inf
j

|fnj
´ fnk

| dµ

ď lim inf
j

ż

X

|fnj
´ fnk

| dµ ď ε,

for k large enough. Finally, because
ż

X

|f ´ fn| dµ ď

ż

X

|f ´ fnk
| dµ`

ż

X

|fnk
´ fn| dµ,

we obtain that f is in fact the limit of the sequence fn in the space
L1pµq. The proof for p ą 1 is a rather mechanical modification of this
argument. �

Finally, we introduce the L8pµq space.

Definition 4.4. We define the p-norm for p “ 8 by

}f}8 “ inf
 

C ě 0 : |fpxq| ď C for almost every x P Rd
(

.

We define the space L8pµq by

L8pµq “ tf : X Ñ R : f is measurable and }f}8 ă 8u,

where again we identify functions which are equal almost everywhere.

Despite a somewhat different definition of L8pµq, we may prove the
following theorems which show that it belongs with other Lppµq spaces.

Theorem 4.5. L8pµq is a Banach space.

Theorem 4.6. Let p0 ě 1 and f P Lppµq for all p0 ď p ă 8. Then
f P L8pµq and limpÑ8 }f}p “ }f}8.
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Questions:

‚ Can you give an example of a sequence of functions, which
illustrates that fn ě 0 is a necessary assumption in the Fatou
lemma?

‚ Can you write a “reverse” Fatou lemma, where lim sup is in-
volved?

‚ Can you use the dominated convergence theorem to strenghten
the Fatou lemma by replacing the assumption fn ě 0 with
fn ě g and g is integrable?

‚ Can you draw the counterexample to the dominated conver-
gence theorem described in Example 1.5?

‚ Can you prove Corollary 1.6?
‚ Can you draw the Chebyshev inequality on a picture?
‚ Can you prove that Rd and Cd are Banach spaces?
‚ Can you think of any other spaces that are Banach spaces?

Problems:

Problem 1. Check that |a`b|p ď 2p{qp|a|p`|b|pq for 1{p`1{q “ 1;
deduce that Lppµq is a linear space.

Problem 2. Show that simple functions are a dense subset of
Lppµq; show that Cr0, 1s is a dense subset of Lpr0, 1s.

Problem 3. Show that CpRq is not a subset of any LppRq; show
that C8c pRq and SpRq are dense in LppRq.

Problem 4. Let pX,Σ, µq be a finite measure space. Prove that
LppXq Ď LqpXq for p ď q.


