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1. Some observations on Lppµq-spaces

1.1. Density. Let us consider the case of pR,BorpRq, λq. Above
all notice that by the very definition of the integral, simple functions
are a dense subset of all LppRq-spaces for 1 ď p ă 8.

Then, observe that compactly supported continuous functions are
p-integrable for every p ě 1 and each such function is bounded. Hence,
CcpRq Ď LppRq and because we may approximate (pointwise) every
indicator function of an interval 1ra,bs by continuous, compactly sup-
ported functions, we can also say that CcpRq is a dense subset of LppRq.

In a similar way we may conclude the same about every space Ck
c pRq

of k-differentiable, compactly supported functions as well as the space
C8c pRq of smooth compactly supported functions.

Finally, however it requires some more calculations, we notice that
the Schwartz class SpRq is also a dense subset of every LppRq-space
(density itself follows from the fact that C8c pRq Ă SpRq, but we need
to show that every function in SpRq is p-integrable in the first place).

1.2. Duality. If E is a Banach space, then we may consider the
space E˚ of all linear functionals on E, i.e. linear operators with nu-
meral values (R or C), or precisely

E˚ “ tφ : E Ñ C : φ is a linear mappingu.

In such case, E˚ is also a Banach space and we say that it is the dual
space of E. The norm on the space E˚ may be defined by the following
identity

}φ}E˚ “ sup
!

φpxq : x P E, }x}E ď 1
)

.

Let 1 ă p, q ă 8 be such that 1 “ 1
p
` 1

q
. Then it turns out that the

spaces Lppµq and Lqpµq are the duals of each other, i.e. Lppµq˚ “ Lqpµq
and vice-versa.

The case when p “ 1 and q “ 8 or p “ 8 and q “ 1 is a bit more
complicated, where we do have L1pµq˚ “ L8pµq, but L8pµq˚ ‰ L1pµq.

We are going to prove only half of this result, to say that every
g P Lqpµq defines in a natural way a linear functional on Lppµq. This
means that g P Lppµq˚ and so Lqpµq Ď Lppµq˚. The other half would
say that every linear functional in LppRdq˚ has such a representation
and hence Lppµq˚ Ď Lqpµq.

Theorem 1.1. Let 1 ă p ă 8 and let g P Lqpµq. Then the mapping

Gpfq “

ż

X

f g dµ

is a bounded linear functional and }G} “ }g}q.
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Proof. We can assume g ‰ 0. It follows from the Hölder inequal-
ity that

ż

X

|f g| dµ ď

ˆ
ż

X

|f |p dµ

˙1{pˆż

X

|g|q dµ

˙1{q

ă 8,

therefore the value Gpfq is well-defined. G is a linear operator because
of the linearity of the integral. Moreover,

|Gpfq| ď

ż

X

|f g| dµ ď }g}q}f}p,

therefore }G} ď }g}q.

Let fpxq “ sgn gpxq|gpxq|q´1. Then
ż

X

|f |p dµ “

ż

X

|g|ppq´1q dµ “

ż

X

|g|q dµ ă 8.

Hence f P Lppµq and }f}pp “ }g}
q
q. Moreover,

Gpfq “

ż

X

|g|q dµ “ }g}qq.

Finally,

Gpfq

}f}p
“
}g}qq

}g}
q{p
q

“ }g}q,

thus }G} ě }g}q. �

With this result in mind (and the missing half), we conclude that
we have another way of calculating the p-norm

}f}p “ sup

"ˇ

ˇ

ˇ

ˇ

ż

X

fg dµ

ˇ

ˇ

ˇ

ˇ

: g P Lqpµq, }g}q ď 1

*

.

Let us conclude this section with noting that the spaces Lppµq are
generally not comparable. We have Lppµq Ď Lqpµq for p ě q, only if µ
is a finite measure, for example the Lebesgue measure on the torus T.

Otherwise, this is not the case and in particular we have

L1
pRqzLppRq ‰ H and LppRqzL1

pRq ‰ H
for every p ą 1.

2. Fourier transform in L1pRq

Before switching to discuss elements of measure and integration
theory, we defined the Fourier transform for functions in the Schwartz
class SpRq. Precisely, for f P SpRq we denote

pfpξq “

ż

R
e´2πixξfpxq dx

and call pf the Fourier transform of the function f .
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Notice that the same definition remains valid for f P L1pRq. Indeed,
for every ξ P R we have

ż

R
|e´2πixξfpxq| dx “

ż

R
|fpxq| dx “ }f}1,

which means that

x ÞÑ e2πixξfpxq

is an integrable function for every ξ P R and hence the relevant integral

– i.e. the Fourier transform pfpξq – is well-defined. Moreover, we have

| pfpξq| “

ˇ

ˇ

ˇ

ˇ

ż

R
e´2πixξfpxq dx

ˇ

ˇ

ˇ

ˇ

ď

ż

R
|e´2πixξfpxq| dx “ }f}1,

which holds for every ξ P R, and hence according to the definition of

} ¨ }8 we have } pf}8 ď }f}1.
Basic properties of the Fourier transform in L1pRq are the same as

in the Schwartz class.

Proposition 2.1. Let f, g P L1pRq, a P C, y P R, n P N and t ą 0.

Denote τyfpxq “ fpx` yq and rfpxq “ fp´xq. We have

(1) zf ` g “ pf ` pg;

(2) xaf “ a pf ;

(3)
p

rf “
r

pf ;

(4) pf “
r

pf ;

(5) xτyfpξq “ e´2πiyξ pfpξq;

(6) f ˚ g P L1pRq and zf ˚ g “ pf pg

We may also prove additional results.

Proposition 2.2. If f P L1pRq, then pf is uniformly continuous
on R.

Proof. Let ε ą 0. For |ξ ´ ζ| ă ε we have

| pfpξq ´ pfpζq| “

ˇ

ˇ

ˇ

ˇ

ż

R

´

e´2πixξ ´ e´2πixζ
¯

fpxq dx

ˇ

ˇ

ˇ

ˇ

ď

ż

R

ˇ

ˇ

ˇ
1´ e´2πixpζ´ξq

ˇ

ˇ

ˇ
|fpxq| dx ď |ξ ´ ζ|}f}1 ă ε}f}1. �

In the context of Fourier series we proved a result called the Rie-

mann-Lebesgue lemma, which says that the Fourier coefficients pfpnq of
an integrable function f P L1pTq (or L2pTq, or CpTq) converge to 0 as
|n| Ñ 8. A similar result is available for the Fourier transform.

Theorem 2.3 (Riemann-Lebesgue lemma). If f P L1pRq then

| pfpξq| Ñ 0 as |ξ| Ñ 8.
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Proof. Consider the function 1ra,bs on R. We then have

z1ra,bspξq “
e´2πiξa ´ e´2πiξb

2πiξ
,

which tends to zero as |ξ| Ñ 8. As a consequence, the result is true
for any simple function.

For a general function f P L1pRq we consider an approximating
sequence of simple functions sn and notice that

| pfpξq| ď | pfpξq ´ psnpξq| ` |psnpξq| ď }f ´ sn}1 ` |psnpξq|. �

3. Inverse Fourier transform in L1pRq

In the same way as the Fourier transform, we may define the inverse
Fourier transform qg of a function g P L1pRq. However – we have to be
very careful not to go too far.

It is not necessarily possible to define the inverse Fourier transform

p pfqq of the function pf itself being the Fourier transform of a function
f in L1pRq. The formula

q

pfpxq “

ż

R
e2πixξ pfpξq dξ

is only valid if we know that pf belongs to L1pRq, which is generally not

the case (we know that pf P L8pRq).
In short – we may define the “inverse Fourier transform” in its

own right for any integrable function, but we cannot say that it is
the “inverse of the Fourier transform” in L1pRq, in the sense that the
composition of the two operators would constitute the identity.

The best approximation of such a result follows from the subsequent
lemma, which we can prove by taking the analogous result for the
Schwartz class and using the fact that SpRq is a dense subset of L1pRq.

Lemma 3.1. For f P L1pRq and g P SpRq we have
ż

R
fpxqpgpxq dx “

ż

R

pfpxqgpxq dx.

Corollary 3.2 (Fourier inversion on L1pRq). If f P L1pRq and
pf P L1pRq, then p pfqq“ f almost everywhere.

Proof. We may prove it in the same way as we did for the Schwartz
class. In the previous lemma consider the heat kernel

gpxq “
1
?
ε
e´

π|x´t|2

ε2

and let εÑ 0 (see the proof of the next lemma, too). �
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Notice that adding almost everywhere is essential, since we already
know that the Fourier transform (and in the same way also the inverse
Fourier transform) “produces” continuous functions i.e. if we start with
a function which is not continuous on a set of measure 0, the result will
“smooth out” those discontinuities.

Observe that by the same token we may describe more properties
of functions f P L1pRq that have the chance of also satisfying the

assumption pf P L1pRq: they have to have a continuous representative
in their class of abstraction rf s and they have to be bounded, i.e.
f P L1pRq X L8pRq.

In a similar way we may also get another result.

Lemma 3.3. If f P L1pRq is continuous at 0, then

lim
εÑ0

ż

R
e´πεξ

2
pfpξq dξ “ fp0q.

Proof. We have
ż

R
e´πεξ

2
pfpξq dξ “

ż

R

{e´πεξ2fpxq dx

“

ż

R

1

ε
e´

πx2

ε2 fpxq dx “ phε ˚ fqp0q.

Because hε is an approximate identity, the last term converges to fp0q
when εÑ 0, provided that f is continuous at 0. �

Finally, we are able to identify some of the “invertible” functions.

Lemma 3.4. If f P L1pRq is continuous at 0 and pf is such that
pf “ Re pf and pf ě 0 then pf P L1pRq, } pf}1 “ fp0q and f “ p pfqq almost
everywhere.

Proof. Because pf ě 0, we can use the previous lemma and the
Fatou lemma to obtain

fp0q “ lim
εÑ0

ż

R
e´πεξ

2
pfpξq dξ

ě

ż

R
lim inf
εÑ0

e´πεξ
2
pfpξq dξ “

ż

R

pfpξq dξ “ } pf}1.

Hence pf P L1pRq. Now we can repeat this calculation using the

Lebesgue dominated convergence theorem instead, with pf as the dom-
inating function, since e´πεξ

2
ď 1. Thus

fp0q “ lim
εÑ0

ż

R
e´πεξ

2
pfpξq dξ “

ż

R
lim
εÑ0

e´πεξ
2
pfpξq dξ “ } pf}1.

The last statement follows from the result we discussed previously. �
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4. Fourier transform in L2pRq

Recall that on the torus we could prove that the Fourier transform
is an isometry between L2pTq (we defined that space in a different but
ultimately equivalent way) and the space of square-summable series
`2pZq. We called it the Parseval identity. We also proved a similar
result for functions in the Schwarz class.

However, for p ą 1 and f P LppRq, the integral in the formula

pfpξq “

ż

R
e´2πixξfpxq dx

cannot be computed. In particular, we are not able to use it directly
to define the Fourier transform on L2pRq.

We may, though, use the formula for f P L1pRq X L2pRq. Then
we may use the fact that L1pRq X L2pRq Ď L2pRq is a dense subspace
(since, for example, it contains the Schwartz class, which is already a

dense set) and extend the operator f ÞÑ pf in an abstract way onto
L2pRq.

To this end we need the following lemma.

Lemma 4.1. If f P L1pRq X L2pRq, then } pf}2 “ }f}2.

Proof. Let h “ f ˚ rf , where rfpxq “ fp´xq and the bar indi-

cates complex conjugation. Then h P L1pRq, ph “ | pf |2 ě 0, and h is
continuous at zero (see Problem 1). Therefore by Lemma 3.4

} pf}22 “ }
ph}1 “ hp0q “

ż

R
fpxq rfp´xq dx “ }f}22. �

This allows us to conclude that f ÞÑ pf is an isometry on a dense
subspace of L2pRq, and hence has a unique extension onto L2pRq. Once
again, keep in mind that using the usual formula for the Fourier trans-
form is in this case perilous. Notice as well that this procedure only
works in L2pRq and not for any other p ą 1.

Naturally, a similar story may be told about the inverse Fourier
transform, and those two operators are now actual inverses of one an-
other on L2pRq.

5. Fourer transform in-between L1pRq and L2pRq

The following two lemmas provide a basis for so-called interpolation.
These results depend heavily on the knowledge of complex analysis and
we only use them to prove a rather technical (albeit important) result
regarding the Fourier transform on spaces “between” L1pRq and L2pRq
(the Hausdorff-Young inequality).

It is therefore only recommended to work through the proofs of
those lemmas if you are familiar and comfortable with the results from
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complex analysis and you are interested in deeper understanding of the
problems in Fourier analysis from the theoretical perspective.

For everyone else it is still advised to read the statements of all the
lemmas, and to read the proof of the Hausdorff-Young inequality by
simply assuming that the Riesz-Thorin lemma is valid.

Lemma 5.1 (Hadamard three-lines lemma). Let F : C Ñ C be an
analytic function in the open strip

S “ tz P C : 0 ă Re z ă 1u,

continuous and bounded on clS and such that

|F pzq| ď B0 when Re z “ 0,

|F pzq| ď B1 when Re z “ 1,

where 0 ă B0, B1 ă 8. Then

|F pzq| ď B1´θ
0 Bθ

1

when Re z “ θ, for any 0 ď θ ď 1.

Proof. Define analytic functions

Gpzq “
F pzq

B1´z
0 Bz

1

and Gnpzq “ Gpzqepz
2´1q{n.

Since F is bounded on the closed unit strip and B1´z
0 Bz

1 is bounded
from below, we conclude that G is bounded by some constant M on
the closed strip clS. We note that G is bounded by 1 on the boundary
of S. Since

|Gnpx` iyq| ďMe´y
2{nepx

2´1q{n
ďMe´y

2{n,

we deduce that Gnpx ` iyq converges to zero uniformly in 0 ď x ď 1
as |y| Ñ 8. Select yn ą 0 such that for |y| ě yn, |Gnpx ` iyq| ď 1
uniformly in x P r0, 1s.

By the maximum principle we obtain that |Gnpzq| ď 1 in the rectan-
gle r0, 1sˆ r´yn, yns. Hence |Gnpzq| ď 1 everywhere in the closed strip.
Letting n Ñ 8, we conclude that |Gpzq| ď 1 in the closed strip clS,
and the expected result for the function F follows immediately. �

Lemma 5.2 (Riesz-Thorin interpolation theorem). Let pX,µq and
pY, νq be two measure spaces. Let T be a linear operator defined on
the set of all simple functions on X and taking values in the set of
measurable functions on Y . Let 1 ď p0, p1, q0, q1 ď 8 and assume that

}T pfq}q0 ďM0}f}p0

}T pfq}q1 ďM1}f}p1 ,

for all simple functions f on X. Then for all 0 ă θ ă 1 we have

}T pfq}q ďM1´θ
0 M θ

1 }f}p
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for all simple functions f on X, where

1

p
“

1´ θ

p0
`

θ

p1
and

1

q
“

1´ θ

q0
`
θ

q1
.

Remark 5.3. The inequalities we impose on the operator T , com-
bined with the fact that simple functions are dense in Lp-spaces, mean
simply that T is a bounded operator from Lp0pX,µq to Lq0pY, νq, and
at the same time from Lp1pX,µq to Lq1pY, νq. The lemma then says
that T has a unique extension as a bounded operator from LppX,µq to
LqpY, νq for all p and q which for some θ satisfy the given identities.

Results of these type are called interpolation theorems, since they
provide a way of understanding the behaviour of a given operator on
spaces lying “between” two other “extreme” spaces where that behaviour
is known. Notice that since Lp-spaces are usually not comparable, the
quotation marks are necessary (at least in this naive formulation).

Proof. Let

f “
m
ÿ

k“1

ake
iαk1Ak

be a simple function on X, where ak ą 0, αk are real, and Ak are
pairwise disjoint subsets of X with finite measure. We need to control

}T pfq}q “ sup

"
ˇ

ˇ

ˇ

ˇ

ż

Y

T pfqg dν

ˇ

ˇ

ˇ

ˇ

: g P Lq
1

pνq, }g}q1 ď 1

*

,

where, because of the definition of the integral, we may in fact consider
only simple functions g on Y (with the q1-norm bounded by 1). Let

g “
n
ÿ

j“1

bje
iβj1Bj ,

where bj ą 0, βj are real, and Bj are pairwise disjoint subsets of Y
with finite measure (f and g are now two fixed simple functions).

Let

P pzq “
p

p0
p1´ zq `

p

p1
z and Qpzq “

q1

q10
p1´ zq `

q1

q11
z.

For z in the closed strip clS “ tz P C : 0 ď Re z ď 1u, define

F pzq “

ż

Y

T pfzqgz dν,

where

fz “
m
ÿ

k“1

a
P pzq
k eiαk1Ak , gz “

n
ÿ

j“1

b
Qpzq
j eiβj1Bj .

By linearity of the integral and the operator T we get

F pzq “
n
ÿ

j“1

m
ÿ

k“1

a
P pzq
k b

Qpzq
j eiαkeiβj

ż

Y

T p1Akq1Bj dν,
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and hence F is analytic in z, since ak, bj ą 0.
Take z P S with Re z “ 0. Because the sets Ak are disjoint, we have

}fz}
p0
p0
“ }f}pp, since

ˇ

ˇa
P pzq
k

ˇ

ˇ “ a
p{p0
k .

Similarly, by the disjointness of the sets Bj we notice that

}gz}
q10
q10
“ }f}q

1

q1 , since
ˇ

ˇb
Qpzq
j

ˇ

ˇ “ b
q1{q10
j .

In the same way, when Re z “ 1 we obtain

}fz}
p1
p1
“ }f}pp and }gz}

q11
q11
“ }f}q

1

q1 .

For Re z “ 0, the Hölder inequality and the hypothesis now give us

|F pzq| ď }T pfzq}q0}gz}q10 ďM0}fz}p0}gz}q10 “M0}f}
p{p0
p }g}

q1{q10
q1 .

Similarly, for Re z “ 1 we obtain

|F pzq| ďM1}f}
p{p1
p }g}

q1{q11
q1 .

We observe that F is analytic in the open strip S and continuous
on its closure. Also, F is bounded on the closed unit strip (by some
constant that depends on f and g). Therefore, by the Hadamard three-
line lemma we obtain

|F pzq| ď

ˆ

M0}f}
p{p0
p }g}

q1{q10
q1

˙1´θˆ

M1}f}
p{p1
p }g}

q1{q11
q1

˙θ

“ M1´θ
0 M θ

1 }f}
r1
p }g}

r2
q ,

when Re z “ θ and θ P r0, 1s. Notice that by assumption and the
definition of P we have

r1 “ P pθq “
pp1´ θq

p0
`
pθ

p1
“ 1

and r2 “ Qpθq “ 1 as well. Hence fθ “ f , gθ “ g and

F pθq “

ż

Y

T pfqg dν.

Taking the supremum over simple functions g on Y such that }g}q1 ď 1,
we obtain the result. �

Corollary 5.4 (Hausdorff-Young inequality). If f P LppRq for

1 ď p ď 2 then for q such that 1 “ 1
p
` 1

q
we have } pf}q ď }f}p (when

p “ 1 then we take q “ 8).

Proof. We apply the Riesz-Thorin lemma to the linear operator

f ÞÑ pf , interpolated between } pf}8 ď }f}1 and } pf}2 “ }f}2. �

As another consequence of the Riesz-Thorin lemma we obtain the
following useful inequality for convolutions. It can also be proved di-
rectly, but now we get it almost immediately.
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Corollary 5.5 (Young inequality for convolutions). Suppose that
1 ď p, q, r ď 8 satisfy 1

r
` 1 “ 1

p
` 1

q
. If f P LppRq and g P LqpRq then

}f ˚ g}r ď }f}p}g}q.

Proof. As the linear operator in the Riesz-Thorin lemma we con-
sider the convolution T pfq “ f ˚ g for a fixed function g. Then we
observe that T : L1pRq Ñ LqpRq and T : Lq

1

pRq Ñ L8pRq, where
1 “ 1

q
` 1

q1
and we get the result by interpolation (see Problem 3). �

6. Convergence and summability of the Fourier transform

Since the direct inverse transform is not always available, we may
also consider the question of recovering a function from its Fourier
transform in a similar way as in the case of Fourier series. Let us only
have a brief look at some of the basic results in order to compare and
contrast them to the theory we developed for the Fourier series.

We would like to determine if and when

lim
RÑ8

ż R

´R

e2πixξ pfpξq dξ “ fpxq,

where the limit can be taken in LppRq or pointwise almost everywhere.
Let the partial sum operator SR be defined by

ySRf “ 1r´R,Rs
pf.

Then we can write the same question as

lim
RÑ8

SRf “ f (for an appropriate notion of the limit).

It turns out that a necessary and sufficient condition for the conver-
gence in norm is that }SRf}p ď Cp}f}p, where Cp is independent of
R. This is in fact the case, at least in dimension 1 (i.e. on R), which
is the only case we consider here. In higher dimensions, as a general
rule, there is no convergence in norm when p ‰ 2, but there are partial
results available.

On R we have SRfpxq “ DR˚fpxq, where DR is the Dirichlet kernel,

DRpxq “

ż R

´R

e2πixξ dξ “
sinp2πRxq

πx
.

This function is not integrable, but it belongs to LqpRq for every q ą 1,
hence DR ˚ f is well-defined if f P LppRq for some 1 ă p ă 8.

Almost everywhere convergence depends on the bound
›

› sup
R
|SRf |

›

›

p
ď Cp}f}p.

This holds if 1 ă p ă 8 (the Carleson-Hunt theorem).
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For the Fourier transform, the method of Cesàro summability con-
sists in taking integral averages of the partial sum operators,

σRfpxq “
1

R

ż R

0

Stfpxq dt

and determining if limRÑ8 σRfpxq “ fpxq. On R we have

σRfpxq “ FR ˚ fpxq,

where FR is the Fejér kernel,

FRpxq “
1

R

ż R

0

Dtpxq dt “
sin2pπRxq

Rpπxq2
.

The Fejér kernel is integrable. It can be proved that for 1 ď p ă 8

and f P LppRq we have

lim
RÑ8

FR ˚ f “ f.
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Questions:

‚ Can you verify at least some of the statements about density
of sets in LppRq spaces from the first section?

‚ Can you find examples of functions to show that

L1
pRqzLppRq ‰ H and LppRqzL1

pRq ‰ H
for every p ą 1, or at least for p “ 8?

‚ Can you recall the formulation of the Riemann-Lebesgue lem-
ma for the Fourier series and write its proof again, now know-
ing the proper definition of L1pTq?

‚ Do you understand the problem with inverting the Fourier
transform in L1pRq?

‚ Can you verify that the extension of the Fourier transform
from L1pRq X L2pRq onto L2pRq exists and is unique?

‚ Can you justify the name of Hadamard’s lemma?
‚ Can you see similarities between the Dirichlet kernels DR de-

fined on R and DN defined on T?

Problems:

Problem 1. Let f P L1pRq and h “ f ˚ rf , where rfpxq “ fp´xq
and the bar indicates complex conjugation. Show that h is continuous
at 0.

Problem 2. Let 1 ă p ă r ă q ď 8 be such that 1
r
“ θ

p
` 1´θ

q
for

some θ P r0, 1s and suppose that f P LppRq X LqpRq. Show that

}f}r ď }f}
θ
p}f}

1´θ
q .

Conclude that if f is in LppRq and f is in LqpRq, then f is in LrpRq for
all r P rp, qs. Hint: Use the Hölder inequality.

Problem 3. Fill the gaps in the proof of the Young inequality for
convolutions.

Problem 4. Verify the formula defining the Dirichlet kernel

DRpxq “

ż R

´R

e2πixξ dξ “
sinp2πRxq

πx
.

and show that for every 1 ă p ă 8 and f P LppRq we have

lim
RÑ8

}DR ˚ f ´ f}p “ 0.

Problem 5. Verify the formula defining the Fejér kernel

FRpxq “
1

R

ż R

0

Dtpxq dt “
sin2pπRxq

Rpπxq2
.

and show that for every 1 ď p ă 8 and f P LppRq we have

lim
RÑ8

}FR ˚ f ´ f}p “ 0.


