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1. Central limit theorem

1.1. Preliminaries.

Definition 1.1. Suppose pR,BorpRq, µq is a measure space such
that µpRq “ 1 (we say that µ is a probability measure). Let

φµpξq “

ż

R
eiξx µpdxq “

ż

R
cospξxqµpdxq ` i

ż

R
sinpξxqµpdxq.

We call φµ the characteristic function of the measure µ.

Notice that the characteristic function is nothing else but the inverse
Fourier transform, up to scaling by 2π – and it so happens in probability
theory, that it would most often be an irrelevant constant.

More precisely, recall that for every non-negative function f P

L1pR, dλq we may define a measure µ by

µpAq “

ż

A

f dλ,

and then (up to scaling)

φµpξq “

ż

R
eiξx µpdxq “

ż

R
eiξxfpxq dx “ qfpξq,

hence the definition is indeed just an extension of the inverse Fourier
transform we are familiar with.

Remark 1.2. Notice that since µ is a finite measure, we have
ż

R
|eixξ|µpdxq “ µpRq “ 1,

hence the integral describing φµ is always well-defined. In fact, we
can show that it is a bounded continuous function (see Problem 1).
However, for a general measure, the Riemann-Lebesgue lemma is no
longer true (what is the characteristic function of δ0?).

For general finite Borel measures µ1, µ2 on R we may also define
the operation of convolution, the result of which is again a finite Borel
measure

pµ1 ˚ µ2qpAq “

ż

R

ż

R
1Apx` yqµ1pdxqµ2pdyq.

Notice that if both measures are defined by integrable functions, i.e.
µ1pAq “

ş

A
fpxq dx and µ2pAq “

ş

A
gpxq dx then

pµ1 ˚ µ2qpAq “

ż

R

ż

R
1Apx` yqfpxqgpyq dx dy

“

ż

R

ż

R
1Apxqfpx´ yqgpyq dy dx “

ż

A

ż

R
fpx´ yqgpyq dy dx

“

ż

A

pf ˚ gqpxq dx.
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This means that the measure µ1˚µ2 is defined by the integrable funtion
f ˚ g, as we would expect.

If both µ1 and µ2 are probability measures then µ1 ˚ µ2 is also a
probability measure.

Just as well, some of the fundamental properties of the Fourier
transform are still valid for measures, which we may formulate using
the notion of characteristic functions. The following proposition is one
of them.

Proposition 1.3. If φµ1 and φµ2 are the characteristic functions
of probability measures µ1 and µ2 then φµ1˚µ2 “ φµ1 ¨ φµ2.

1.2. Inversion and the Uniqueness Theorem. A character-
istic function φ uniquely determines the measure µ it comes from.
This observation builds on the discussion about inversion of the Fourier
transform from the previous set of notes (most importantly, recall that
we cannot use the inverse transform directly).

Theorem 1.4. If the probability Borel measure µ on R has char-
acteristic function φ, and if µptauq “ µptbuq “ 0, then

(1) µ
`

ra, bq
˘

“ lim
TÑ8

1

2π

ż T

´T

e´iξa ´ e´iξb

iξ
φpξq dξ.

Distinct measures cannot have the same characteristic function.

Proof. Assume the inversion formula (1) holds. Let µ and ν share
the same characteristic function. Notice there may only be a countable
number of points such that such that µptauq ‰ 0 or νptauq ‰ 0. For
any interval which doesn’t have one of its ends at one of such points we
have µra, bq “ νra, bq. Such intervals form a ring generating BorpRq,
hence µ “ ν.

Denote by IT the quantity inside the limit in (1). By changing the
order of integrals1 we get

IT “
1

2π

ż

R

ż T

´T

eiξpx´aq ´ eiξpx´bq

iξ
dt µpdxq.

Let

SpT q “

ż T

0

sin t

t
dt.

We can show that

lim
TÑ8

SpT q “
π

2
.

1It is outside the scope of this course, but one always needs to be extremely
careful with changing the order of integrals: look up the Fubini-Tonelli theorem.
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Moreover, if

sgn θ “

$

’

&

’

%

´1 if θ ă 0,

0 if θ “ 0,

`1 if θ ą 0,

then
ż T

0

sin θt

t
dt “ sgn θS

`

T |θ|
˘

.

Using the Euler formulas and the fact that sin s and cos s are odd and
even, respectively, we thus obtain

IT “

ż

R

„

sgnpx´ aq

π
S
`

T |x´a|
˘

´
sgnpx´ bq

π
S
`

T |x´b|
˘



µpdxq.

The integrand here is bounded and converges as T Ñ 8 to the function

ψa,bpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if x ă a
1
2

if x “ a

1 if a ă x ă b
1
2

if x “ b

0 if b ă x

Thus, using the Lebesgue dominated convergence theorem, we obtain
IT Ñ

ş

ψa,b dµ “ µ
`

ra, bq
˘

, if only µptauq “ µptbuq “ 0. �

1.3. The Continuity Theorem. Because of the results presented
in this section, characteristic functions can also be used to facilitate
studying limits of measures – but first we need to introduce a notion
of such limits, called (most often) weak convergence.

Definition 1.5. We say that a sequence of probability Borel mea-
sures µn converges weakly to the measure µ if for every bounded con-
tinuous function g we have

lim
nÑ8

ż

R
g dµn “

ż

R
g dµ.

We denote µn ñ µ.

Theorem 1.6. The following are equivalent

(1) µn converge weakly to µ;
(2) for every closed set A we have

lim sup
nÑ8

µnpAq ď µpAq;

(3) for every open set A we have

lim inf
nÑ8

µnpAq ě µpAq;
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(4) for every Borel set A with µpbdAq “ 0 we have

lim
nÑ8

µnpAq “ µpAq.

The proof is not very complicated, but unfortunately it is outside
the scope of this course. For more details, you can read Chapters 25
and 26 in P. Billingsley Probability and Measure, Third Edition, Wiley
1995.

The following theorem is called the continuity theorem and it
is an essential tool in probability theory, making it one of the most
important applications of the Fourier transform.

Theorem 1.7. Let µn, µ be probability measures with characteristic
functions φn, φ. Then µn ñ µ if and only if φpξq Ñ φpξq for every ξ.

Proof. Notice that x ÞÑ eixξ is a bounded continuous function for
every ξ. It therefore follows directly from definition of weak conver-
gence that if µn ñ µ then φpξq Ñ φpξq for every ξ.

Let g P SpRq. Then we have

ż

R
qgpξqφnpξq dξ “

ż

R
gpxqµnpdxq,

which, like the case in L1pRq, can be proved by extending the same
formula known for µn in the Schwartz class.

Letting nÑ 8, the Lebesgue dominated convergence theorem im-
plies that

lim
nÑ8

ż

R
gpxqµnpdxq “ lim

nÑ8

ż

R
ψpξqφnpξq dξ

“

ż

R
ψpξqφpξq dξ “

ż

R
gpxqµpdxq.

For an interval pa, bq, let g˘ P SpRq be such that g´ ă 1pa,bq ă g`.
Then

lim sup
nÑ8

µn
`

pa, bq
˘

ď lim sup
nÑ8

ż

R
g`pxqµnpdxq “

ż

R
g`pxqµpdxq,

lim inf
nÑ8

µn
`

pa, bq
˘

ě lim inf
nÑ8

ż

R
g´pxqµnpdxq “

ż

R
g´pxqµpdxq.

Now we let g` Ó 1pa,bq and g´ Ò 1pa,bq to conclude that

µppa, bqq ď lim inf µnppa, bqq ď lim supµnppa, bqq ď µpra, bsq.

If µptauq “ µptbuq “ 0, then the extreme values are equal, so that the
limit exists as required. �
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1.4. Central limit theorem, analytical version. Another ap-
plication of the Fourier transform is the central limit theorem. Formu-
lated in the language of analysis, it is not very complicated. We are
going to discuss its proabilistic formulation as well in the following sec-
tions. Notice how it depends on the special properties of the heat kernel
(the Gaussian function) in connection with the Fourier transform.

Theorem 1.8. Suppose that µ is a Borel measure on R such that
µpRq “ 1 and in addition

ż

R
xµpdxq “ 0 and

ż

R
x2 µpdxq “ σ2

ă 8

Then for every interval A (or every Borel set A) we have

lim
nÑ8

`

µ ˚ µ ˚ ¨ ¨ ¨ ˚ µ
loooooomoooooon

n times

˘

p
?
nAq “

1

σ
?

2π

ż

A

e´x
2{σ2

dx.

Notice that the type of convergence that we see in the formulation of
the central limit theorem is exactly the weak convergence of measures.
We call the measure on the right hand side the Gaussian measure
(with mean 0 and variance σ2).

Proof. We compute the characteristic function of the convolution
in question. This is rφµpξ{

?
nqsn. The Taylor expansion of this function

at ξ “ 0 is

φµpξq “ 1´
ξ2σ2

2
` opξ2

q.

The characteristic function of the Gaussian measure with mean zero
and variance σ2 has the same Taylor expansion.

Notice that if a, b are complex numbers with |a| ď 1, |b| ď 1, then
|an ´ bn| ď n|a´ b|, hence we can write

ˇ

ˇ

ˇ
rφµpξ{

?
nqsn ´ e´ξ

2{2σ2
ˇ

ˇ

ˇ
ď n

ˇ

ˇ

ˇ
rφµpξ{

?
nqs ´ e´ξ

2{2nσ2
ˇ

ˇ

ˇ
.

But from the Taylor expansions

φµpξ{
?
nq ´ e´ξ

2{2σ2

“ op1{nq,

which proves that limnÑ8rφµpξ{
?
nqsn “ e´ξ

2{2σ2
. The conclusion now

follows from the continuity theorem (and the uniqueness of the inver-
sion). �

1.5. Independence. In order to discuss probability theory, we
have to adjust our language.

Let pΩ,Σ,Pq be a probability space. Every set A P Σ is called
an event. Every measurable function X : Ω Ñ R (or C) is called a
random variable.
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Every real valued random variable has a corresponding distribu-
tion, which a probability measure on R, defined by

µpAq “ P
´

 

X´1
pAq

(

¯

.

By ErXs we denote the expectation, which is simply the integral

ErXs “

ż

Ω

X dP “
ż

R
xµpdxq.

In the same way we may define the variance VarpXq “ ErX2s´ErXs2,
where ErX2s “

ş

R x
2 µpdxq.

If µ is the distribution of the random variable X then we also call
φµ the characteristic function of X and we have

φµpξq “ EreiξXs “

ż

R
eixξ µpdxq.

We may denote φX “ φµ.

Definition 1.9. We say that events A1, . . . An P Σ are mutually
independent if for every I Ď t1, . . . , nu we have

P
ˆ

č

kPI

Ak

˙

“
ź

kPI

PpAkq

Definition 1.10. By FX we denote the cumulative distribution
function of a random variable X, i.e.

FXptq “ P
`

tX ď tu
˘

.

For a vector of random variables pX1, . . . , Xnq we denote

FpX1,...,Xnqpx1, . . . , xnq “ P
´

tX1 ď x1u X . . .X tXn ď xnu
¯

.

Definition 1.11. We say that X1 and X2 are independent ran-
dom variables if

FpX1,X2qpx1, x2q “ FX1px1qFX2px2q.

This can be extended to vectors of random variables of any size, follow-
ing the preceding definitions, as well as independence between vectors
of random variables.

Proposition 1.12. If X1 and X2 are independent random variables
then

ErX1X2s “ ErX1sErX2s.

This property implies an important relation for characteristic func-
tions. If Yj “ cospξXjq and Zj “ sinpξXjq for j “ 1, 2, then pY1, Z1q
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and pY2, Z2q are independent We thus have

φX1pξqφX2pξq “ pErY1s ` iErZ1sqpErY2s ` iErZ2sq

“ ErY1sErY2s ´ ErZ1sErZ2s ` ipErY1sErZ2s ` ErZ1sErY2sq

“ ErY1Y2 ´ Z1Z2 ` ipY1Z2 ` Z1Y2qs

“ EreiξpX1`X2qs “ φpX1`X2qpξq.

Similarly, if X1, . . . , Xn are independent, then

φpX1`...`Xnqpξq “ E
”

eiξ
řn

k“1Xk

ı

“

n
ź

k“1

EreiξXks

“ φX1pξq ¨ . . . ¨ φXnpξq.

1.6. The central limit theorem, probabilistic version. We
can now reformulate the cenral limit theorem in the language of proba-
bility theory. Notice that it is in fact the same theorem as we already
proved.

Let N denote a random variable with the standard normal distri-
bution:

P pN P Aq “
1
?

2π

ż

A

e´x
2{2 dx.

Theorem 1.13. Suppose that Xn is a sequence of independent ran-
dom variables having the same distribution with mean c and finite pos-
itive variance σ2. If Sn “ X1 ` ¨ ¨ ¨ `Xn, then

Sn ´ nc

σ
?
n

ñ N .

2. Radon transform

Consider a flat section of an object (e.g. an internal organ inside a
human) being scanned by an X-ray beam (see Figure 1)

Let Iin be the intensity of the beam before entering the object and
d be the distance travelled. If the material is homogeneous and ρ is the
absorption rate (perhaps related to the density, or water content, or
something else that physics and biology can tell us), then the output
intensity is given by Iout in the following relation

Iout “ Iine
´dρ,

However, if the absorption rate ρ is variable, then

Iout “ Iine
´
ş

L ρpτq dτ ,

where the integral is taken along the path of the beam L inside the
object. If we artificially put ρ “ 0 everywhere on the outside, then
L may be considered to simply be any given straight line in R2, since
such a change doesn’t affect the value of the integral.
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Figure 1. An X-ray beam passing through an object.

Now imagine a CAT2 scanner, able to send X-ray beams in all
directions from every point around the section of an organ and then
take a measurement on the opposite side (see Figure 2).

Figure 2. A very simple model of a CAT scanner.

To model this situation, we may define the Radon transform

pRρqpLq “
ż

L

ρpτq dτ “ logpIin{Ioutq,

2Computed Axial Tomography; many other instruments are based on the same
principle – in electron microscopy, seismology, etc.
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which, for a given function ρ, assigns a value to each line L. Since we
are most interested in objects that can be scanned from all directions on
the outside, we could assume that ρ has a compact support. However,
it is slightly more general, and more convenient, to assume ρ P SpR2q,
which stands for the Schwartz class on R2 (defined in an analogous
way to the one-dimensional case). It contains all smooth, compactly
supported functions.

Suppose we know the value of the measurement (like the CAT scan
does), along each line L, but the function ρ is otherwise unknown – and
it is our goal is to recover this function (since it may give us a picture
of a damaged kidney, or something like this).

First we parametrize the set of lines on the plane R2. By Lpt, αq we
denote the line perpendicular to the vector pcosα, sinαq and passing
through the point pt cosα, t sinαq. It may also be described by the
equation x cosα ` y sinα “ t or the parametrization

R Q u ÞÑ pt cosα ´ u sinα, t sinα ` u cosαq P L

Thanks to this, way we may define pRρqpt, αq, where t P R, α P r0, πq,
by the formula

pRρqpt, αq “
ż

Lpt,αq

ρpτq dτ

“

ż

R
ρpt cosα ` u sinα, t sinα ´ u cosαq du.

Notice that if ρ P SpR2q then for a fixed α we have Rρp ¨ , αq P SpRq
(see Problem 3), hence we may calculate the Fourier transform of the
function Rρ along the t variable

zpRρqpξ, αq “
ż

R
e´2πitξ

pRρqpt, αq dt

“

ż

R
e´2πitξ

ż

R
ρpt cosα ` u sinα, t sinα ´ u cosαq du dt

“

ż

R

ż

R
e´2πipx cosα`y sinαqξρpx, yq dx dy

“

ż

R
e´2πiy sinαξ

ż

R
e´2πix cosαξρpx, yq dx dy

“ pρpξ cosα, ξ sinαq,

where we substituted
`

t
u

˘

“
`

cosα sinα
´ sinα cosα

˘`

x
y

˘

(a rotation) and pρ stands

for the Fourier transform of ρ taken in variables x P R and y P R
independently.
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The Fourier transform may be inverted and then we can switch
back to polar coordinates, obtaining

ρpx, yq “

ż

R

ż

R
e2πipxη`yδq

pρpη, δq dη dδ

“

ż

R

ż π

0

e2πipxξ cosα`yξ sinαq
pρpξ cosα, ξ sinαq dα |ξ| dξ

“

ż

R

ż π

0

ż

R
|ξ|e2πiξ

`

x cosα`y sinα´t
˘

pRρqpt, αq dt dα dξ.

In this way recovered the function ρ in terms of the values of the Radon
transform Rρ (we obtained the formula for inverting the Radon trans-
form).

Of course, in real life the CT scan can only take a finite number of
measurements. The ”discrete Fourier transform” will be the topic of
the next set of lecture notes.
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Questions:

‚ Can you calculate the characteristic functions of the Dirac
deltas δ0 and δy, y P R?

‚ Can you prove Proposition 1.3, at least for µipAq “
ş

A
fipxq dx?

‚ Can you justify why for a probability measure µ the set A such
that µptauq ‰ 0 for a P A can only be countable?

‚ Can you define independence for more than two random vari-
ables? Notice that you can define pairwise independence or
mutual independence.

‚ Can you prove Proposition 1.12?
‚ Can you see that both formulations of the central limit theo-

rem are essentially the same?
‚ Can you try to define the Schwartz class on R2 or Rn (remem-

ber that the derivatives in different directions may be mixed)?

Problems:

Problem 1. Prove that for a probability measure µ, the charac-
terictic function φµ is a continuous, bounded function.

Problem 2. Prove that limTÑ8

şT

0
sin t
t
dt “ π

2
.

Problem 3. Show that if ρ P SpR2q then for every α P r0, πq we
have Rρp ¨ , αq P SpRq and

}Rρpt, αq ´Rρpt, βq} ď C|α ´ β|.


