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1. Preliminaries

Consider the space (group) ZN “ t0, 1, . . . , N ´ 1u with the modu-
lo N addition operation, i.e. for every n`m P ZN we define

n`N m “

"

n`m if n`m ă N,

n`m´N if n`m ě N.

We may also consider the group of N -th roots of unity,

SN “ tx P C : xN “ 1u “ tωN , ω
2
N , . . . , ω

N
N “ 1u,

where ωN “ e´2πi{N and ωkN “ e´2πik{N for example S2 “ t´1, 1u
and S4 “ t´i,´1, i, 1u. In a natural way, SN can be seen as a subset
of the unit circle S1 ” T. The group operation is given by regular
multiplication (in C), since if xN “ 1 and yN “ 1, then px ¨ yqN “ 1.

Notice the natural isomorphism (two-way homomorphism) between
groups pZN ,`Nq and pSN , ¨ q. This equivalence is essentially exploiting
the same idea we used to identify the interval r0, 2πq and the torus
(unit circle) T.

Definition 1.1. For a given N P N, a function f : ZÑ C is called
N -periodic if fpn`Nq “ fpnq for every n P Z.

Just as a 2π-periodic function f : R Ñ C may be equivalently
considered to be defined on T or the interval r0, 2πq, an N -periodic
function may be seen as defined on Z, ZN or SN , depending on the
context.

It is convenient to treat functions (that is, finite sequences) defined
on ZN as N -periodic simply to be able to write ` instead of `N , as we
will do from now on.

As the “standard” measure (the analogue of the Lebesgue measure
in some sense) on ZN we introduce

µ “
1
?
N

N´1
ÿ

k“0

δk, µ : PpZNq Ñ R,

where PpZNq is the power set of ZN . Simply said, we put Dirac deltas
δk at each point in ZN .

Notice that it makes little sense to distinguish function spaces like
CpZNq, L1pZNq, L2pZNq, since they all coincide not only as sets, but
all their topologies are also equivalent (this is a theorem we are not
going to prove).

2. Discrete Fourier transform

We may define the discrete Fourier transform (DFT), or simply
the Fourier transform on ZN in one of the following forms

pfpkq “
1
?
N

N´1
ÿ

n“0

fpnqe´2πi
kn
N “

ż

ZN

fpxqe´2πi
kx
N µpdxq.
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Let ω “ ωN “ e´2πi{N and consider the matrix

FN “

¨

˚

˚

˚

˚

˚

˝

1 1 1 . . . 1
1 ω ω2 . . . ωN´1

1 ω2 ω4 . . . ω2pN´1q

...
. . .

...

1 ωN´1 ω2pN´1q . . . ωpN´1q
2

˛

‹

‹

‹

‹

‹

‚

.

Keep in mind, this matrix is solely dependent on N and it is very easy
for a computer to, well, compute and store in memory. Then a discrete
Fourier transform may be written as

pf “ FNf
T ,

where all we have to do is to consider f and pf as N -dimensional vectors.
Whichever of the formulas we choose, it is easy to see that the dis-

crete Fourier transform is a linear operator. Moreover, we may notice
that for an N -periodic function f we have

?
N pfpk `Nq “

N´1
ÿ

n“0

fpnqe´2πi
pk`Nqn

N

“

N´1
ÿ

n“0

fpnqe´2πine´2πi
kn
N “

N´1
ÿ

n“0

fpnqe´2πi
kn
N “

?
N pfpkq,

since e´2πin “ 1. This shows that pf is also an N -periodic function.

2.1. Inverse of the discrete Fourier transform. To compute
the inverse of the discrete Fourier transform, we simply need to invert
the matrix FN .

Theorem 2.1. We have IN “ FNFN , where IN is the N ˆ N
identity matrix.

Proof. For every z P C we have

N´1
ÿ

k“0

zk “

$

&

%

N if z “ 1,

1´ zN

1´ z
if z ‰ 1.

For z “ ωj´n we have zN “ 1, since ω “ e´2πi{N is a root of unity, but
z “ 1 only if j “ n. Therefore

1

N

N´1
ÿ

k“0

ωpj´nqk “

"

1 if j “ n,

0 if j ‰ n.

Notice that ω´1 “ ω and

ωjk ωkn “ ωpj´nqk.
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Therefore

pFNFNqjn “
1

N

N´1
ÿ

k“0

ωjk ωkn “
1

N

N´1
ÿ

k“0

ωpj´nqk “ pINqjn �

The result of this theorem is that F´1N “ FN . On the side, we may
also note that FN “ pFNq

T and a matrix A with the property that

A´1 “ AT is called unitary.
Naturally, we define the inverse of the discrete Fourier transform by

the action of the matrix F´1N and it is also a linear (unitary) operator
from the space of N -periodic functions to itself.

Definition 2.2. For f, g P CpZNq we define the convolution by

rf ˚ gspnq “
N´1
ÿ

k“0

fpkqgpn´ kq.

Then rf ˚ gs is also in CpZNq.

The discrete Fourier transform has properties we would, by now,
expect.

‚ If f P CpZNq and gpkq “ fpk ` 1q then pgpkq “ ωk pfpkq.

‚ If f, g P CpZNq then {rf ˚ gspkq “ pfpkqpgpkq.

‚ If f P CpZNq has only real values, then pfpN ´ kq “ pfpkq.

3. Fast Fourier transform

The most obvious use of the DFT is to approximate the Fourier
transform or the Fourier series – by taking a “mesh” of points either
on the torus T or the real line R (or rather a satisfyingly long, but
bounded, interval).

Taking the DFTs on denser and denser meshes is essentially equiva-
lent to taking the integral sums defining the (Riemann) integral behind
the Fourier transform either on T or R. Such sums by their very nature
serve as good approximations.

However, as the mesh size N grows, the matrix FN grows at the
rate N2 and so does the number of arithmetic operations we have to
perform to calculate FNf .

Fortunately, in 1965 James Cooley and John Tukey invented1 an
algorithm which reduces the complexity to order N logN . Further
improvements have been made since, but this order is speculated to be
the optimal one (it remains an open problem in computer science to
prove it!).

1Apparently the same algorithm had beed used in 1805 by Carl Friedrich Gauss
(predating Fourier’s invention of the Fourier analysis in 1807/1822!), but remained
undiscovered until recently. See M. T. Heideman, D. H. Johnson, C. S. Burrus
Gauss and the History of the Fast Fourier Transform, Archive for History of Exact
Sciences 1985.
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The Cooley-Tukey algorithm is usually referred to as Fast Fourier
Transform (FFT), which may be misleading, since it is not a trans-
form as such, but a procedure to compute the DFT.

Let us look at this idea in the simplified case when N “ 2N0 . Notice
that ω2

N “ e´4πi{N “ e´2πi{pN{2q “ ωN
2

. We have

pfpnq “
N´1
ÿ

k“0

fpkqωknN “

N
2
´1
ÿ

k“0

fpkqω2kn
N `

N
2
´1
ÿ

k“0

fpkqω
p2k`1qn
N

“

N
2
´1
ÿ

k“0

fpkqωknN{2 ` ωnN

N
2
´1
ÿ

k“0

fpkqωknN{2,

where we simply grouped together the even and odd indices in the
original sum. But the two sums are DFTs themselves, namely

pfpnq “ pfevenpnq ` ω
n
N
pfoddpnq

The rest of the algorithm is to continue this idea until there is nothing
left to do: starting from the DFT on Z2N0 we reduce the problem to
computing the DFT (twice) on Z2N0´1 , then (four times) on Z2N0´2 ,
then . . . until we reach the DFT on Z1, which is an identity.

Note that the applications of FFT are much wider that “just” the
context of the Fourier transform in its various forms. Because of the
convolution identity, it is also used to efficiently compute convolutions
(almost every image, video and audio filter has a convolution behind
it, so do encryption algorithms). It is often faster to compute the DFT
using FFT, perform multiplication and invert the DFT, using FFT
again, instead of computing the convolution directly.

4. Generalizations

As you may have noticed we give different names, like Fourier se-
ries, Fourier transform, discrete Fourier transform, to objects which
resemble each other a lot, being only defined on different underlying
spaces. Nearing the end of the course, the truth may finally be revealed.
They are, in principle, one and the same thing.

Definition 4.1. Suppose pX,‘q is a locally compact group and at
the same time pX,Σ, µq is a measure space. We call µ a (left) Haar
measure if µpx‘ Aq “ µpAq for every x P X and every set A P Σ.

Remark 4.2. x‘ A “ tx‘ y : y P Au, A‘ x “ ty ‘ x : y P Au.

Moreover, there is a (Haar’s) theorem saying that the left Haar
measure is unique – up to being multiplied by a constant – and so is
analogously defined right Haar measure (for A‘x, since the group may
not be abelian/commutative). If the group is abelian, then the left and
right Haar measures coincide.

We are familiar with some Haar measures already
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‚ λ is the Haar measure on pR,`q (we proved it!);
‚ λ is the Haar measure on pT, ¨ q ”

`

r0, 2πq,`2π

˘

;

‚ 1?
N

řN´1
n“0 δn is the Haar measure on ZN .

The Haar measure on pRzt0u, ¨ q is
ş

A
1
|x|
dx.

There exists a field of mathematics called group representation
theory. Its purpose is to describe, given a group G, all homomor-
phisms between G and subgroups of Mnˆn, the group of square matri-
ces (of some size). We call such homomorphisms representations.

In this way the abstract group action can be viewed as matrix
multiplication, which may be easier to understand (and compute).

Definition 4.3. A character of a locally compact abelian (LCA)
group G is a continuous function χ : GÑ C, which satisfies

|χpgq| “ 1 and χpg1g2q “ χpg1qχpg2q for all g1, g2 P G,

i.e. a character is a (one-dimensional) representation of G.

Consider pR,`q, which is an example of an LCA group. For every
ξ P R the function x ÞÑ eξx is a character: px` yq ÞÑ eξpx`yq “ eξxeξy.

Theorem 4.4 (Pontryagin). The set of characters pG of an LCA

group G is itself an LCA group, and
p

pG “ G.

The group pG is hence called the Pontryagin dual of the group G.
Now we are in the position to define the abstract form of the Fourier
transform on LCA groups. Let f P L1pG, µq, where µ is the Haar

measure. For every χ P pG we define

pfpχq “

ż

G

fpgqχpgqµpdgq.

Of course, we may sprinkle this defintion with normalizing constants,
suitable to any particular application. We can prove the Plancharel-
Parseval identity, the convolution-multiplication property, isometry be-

tween L2pGq and L2p pGq (subject to all the warnings we discussed in
the case of R), etc.

group G dual pG comments
T ” S1 Z Fourier series

R R Fourier transform and its inverse
ZN ” SN ZN ” SN Discrete Fourier transform

Z T “inverting” Fourier series2

(Rzt0u, ¨ q pRzt0u, ¨ q (modified) Mellin transform
Rd Rd d-dimensional Fourier transform
T8 Z8 T8 is a very important group!

Tˆ R Zˆ R ...and all sorts of such combinations

2also called Discrete Time Fourier Transform
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Questions:

‚ Can you substantiate the claim that the DFT can be treated
as an approximation of the Fourier transform?

‚ Can you calclate the number of arithmetic operations (addi-
tion and multiplication) necessary to compute the DFT by
directly using the matrix FN?

‚ Do you understand the structure of the FFT algorithm?
‚ Compute N2 and N logN for some N ą 1000.

Problems:

Problem 1. Compute the number of arithmetic operations (if pos-
sible, separately of addition and multiplication) necessary to compute
the DFT using the FFT algorithm. Prove that it is of order N logN .

Problem 2. Implement the FFT algorithm on Z2N in your favour-
ite programming language. Try to come up with of a reasonable (even
if suboptimal) solution for an arbitrary ZN .

Problem 3. Prove that µpAq “
ş

A
1
|x|
dx is the Haar measure on

pRzt0u, ¨ q.


