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1. Preliminaries

As we saw in several examples, Fourier analysis can be used to
analyse verious measurements progressing in time – which works well
if we deal with a situation where the observed data is periodic, with a
period fixed. This is, however, an idealized situation:

‚ A seismic tremor (natural of artificial) consists of “fast” and
“slow” waves, each providing valuable information, both in
terms of their strenth and time of occurence, but they require
separate “resolutions” for analysis.

‚ An ECG gives a periodic (rhytmic) reading in a healthy per-
son, but once there is an arrythmia, it becomes even more
important to obtain useful information from the cardiogram.

‚ A symphony consists of a large number of individual notes,
each of which can be considered as a wave (periodic oscillation
of air), but the result as a whole is seldom repetitive.

The wavelet analysis provides tools for addressing those issues. First,
let us look at an example (still idealized) Here, we simply have frag-
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Figure 1. “Locally periodic” signal.

ments of sinx, sin 3x and sin 9x, glued together on consecutive intervals
(and we can continue this over the entire line in some fashion). We
can thus easily divide the line into separate intervals and perform the
Fourier transform to discover the individual frequencies on each such
interval (by “periodicizing” the function and using the framework of
the Fourier series).

We can only do this, however, because we know how to divide the
line (we can easily see where each “simple” signal begins and ends). If
we didn’t know this, we could imagine a moving “window” of a fixed
length.

Mathematically, this procedure is the following:

gtpξq “
ż

R
fpxq1rt,t`wspxqeixξ dx,

where t is allowed to change and w is the fixed size of the window,
while observing the change of values of g with respect to ξ allows us to
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discover when we have a “correct” reading of the frequency (thanks to
the orthogonality relations). In our example, such a window still allows
us to measure the frequencies when contained in each “base” interval,
but it produces a garbage outcome when passing over a transition point
– as a result, we want the window to be small, so that it does not happen
too often.

On the other hand, when the window is too small, the frequency
reading becomes unreliable – a small fragment of the sine function does
not look like the sine function when extended in a periodic way to the
whole line. In each window we need to observe several full oscillations,
so that when the end values “do not match”, it doesn’t affect the
reading too much.

We thus have to deal with two opposing forces: a larger window
provides a more reliable measurement of the frequency spectrum and
a smaller window allows us to better localize those measurements in
time.

Instead of relying on the Fourier transform1, there is a better ap-
proach.

2. Haar wavelets

2.1. Scaling function. Consider the function

φpxq “ 1r0,1spxq.
Definition 2.1. For n P N, the space of step functions at level n,

denoted by Vn, is defined to be the space of finite (real/complex-valued)
linear combinations of functions in the set

tφp2nx´ kqu, k P Z.
In other words, Vn is the space of piecewise constant (simple) functions
of finite support whose discontinuities are contained in the set

t. . .´ 2
2n
,´ 1

2n
, 0, 1

2n
, 2
2n
, 3
2n
. . .u.

We call those points the dyadic points.

A function in V0 is a piecewise constant function with discontinuities
contained in the set of integers. A function in Vn is also contained in
Vn`1, hence we have

V0 Ă V1 Ă V2 Ă . . . Vn´1 Ă Vn Ă Vn`1 . . . .

Proposition 2.2.

‚ fpxq P V0 if and only if fp2nxq P Vn.
‚ fpxq P Vn if and only if fp2´nxq P V0.

1The Fourier transform is still one of the most important tools for developing
this theory and proving the theorems.
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Notice that the functions φpx´ kq each have unit L2-norm, namely

}φpx´ kq}22 “
ż

R
φpx´ kq2 dx “

ż k`1

k

1 dx “ 1.

Moroever,

xφpx´ jq, φpx´ kqyL2pRq “
ż

R
φpx´ jqφpx´ kq dx “ δjk,

where δjk “ 1 if j “ k and δjk “ 0 if j ‰ k.
Thus tφpx´kqukPZ is an orthonormal basis for V0. In the same way,

the set t2nφp2nx´ kqukPZ is an orthonormal basis of Vn.

2.2. Haar wavelets. The spaces Vn and their orthonormal bases
are only half of what we need. In order to “isolate” the behaviour of
a function “on level n”, we have to describe spaces Vn`1zVn, or better
Vn`1 X pVnqK.

The idea is to decompose Vn`1 as an orthogonal sum of Vn and its
complement. Let’s start with n “ 0. Since V0 is generated by φ and its
translates, it is reasonable to expect that the orthogonal complement of
V0 is generated by the translates of some function ψ. In such situation,

(1) ψ P V1 and so ψpxq “ ř

k akφp2x ´ kq for some choice of
(finitely many) ak P R;

(2) ψ is orthogonal to V0, i.e.
ş

R ψpxqφpx´ kq dx for all k P Z.

The simplest ψ satisfying both of these requirements is the function

ψpxq “ φp2xq ´ φp2x´ 1q “ 1r0,1{2spxq ´ 1r1{2,1spxq.
It is easy to notice that ψ P V1 and

ż

R

`

1r0,1{2spxq ´ 1r1{2,1spxqq1rk,k`1spxq dx
“ λ

`rk, k ` 1s X r0, 1{2s˘´ λ`rk, k ` 1s X r1{2, 1s˘ “ 0,

since it can only be 0´ 0 or 1
2
´ 1

2
. Thus ψ is orthogonal to V0.
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Figure 2. The Haar wavelet

Definition 2.3. The function ψpxq “ φp2x ` 1q ´ φp2xq is called
the Haar wavelet (see Figure 2).
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In the same way we may show that ψpx ´ kq P V1 is orthogonal
to V0 for every k P Z. In fact, it is not difficult to notice that the

space W0 “
!

ř

k akψpx ´ kq
)

, spanned by finite linear combinations

of ψpx´ kq is the orthogonal complement of V0 in V1. Thus

V1 “ V0 ‘W0,

and by the same scaling property as before,

Vn “ Vn´1 ‘Wn´1,

where Wn “
!

ř

k ak2
nψp2nx ´ kq

)

with t2nψp2nx ´ kqukPZ being the

orthonormal basis.
By induction we obtain

Vn “ V0 ‘W0 ‘W1 ‘ . . .‘Wn´1,

or in other words, each function f P Vn may be uniquely written as

f “ f0 ` w0 ` w1 ` ¨ ¨ ¨ ` wn´1,
where wj P Wj and f0 P V0.

As n increases to infinity, we have the following result.

Theorem 2.4. The space L2pRq can be decomposed as an infinite
orthogonal direct sum

L2pRq “ V0 ‘W0 ‘W1 ‘ . . . “ V0 ` cl

ˆ

8
à

n“0

Wn

˙

In particular, each f P L2pRq can be written uniquely as

f “ f0 `
8
ÿ

n“0

wn,

where f0 P V0 and wn P Wn.

This theorem may be proved directly, or you may use the Stone-
Weierstrass theorem – but since the Haar functions are not continuous,
and hence are not a sub-algebra of Cpra, bsq, you have to first “isolate”
the dyadic points with neighbourhoods of small measure and then com-
bine two (or three – the last one for the “tails” at infinities) different
types of estimates. It’s an optional exercise.

We can use this representation to “filter” the necessary information
out of the given function by considering only the relevant “band” of
spaces Wn. If, for example, we expect the signal to have a regular shape
with short “spikes” representing noise (see Figure 3), we can cut the
tail of the series, which only accounts for the spikes of limited width,
but leave the rest of the function, which can be well approximated by
wider blocks relatively unchanged.

Let us also notice that while we use V0 as a “starting” space with
“resolution” 1, and then descend to finer and finer divisions with spaces
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Figure 3. The signal and the noise.

Vn and Wn, in principle we may also go in the opposite direction and
for n P N define spaces V´n and W´n of step functions of increasing
base size 2n. Then

L2pRq “ cl

ˆ 8
ď

n“´8

Vn

˙

“ cl

ˆ

8
à

n“´8

Wn

˙

.

3. Abstract wavelets

Haar wavelets are the simplest example, but we can abstract the
basic ideas we developed and then study different sets of wavelets,
which may be relevant in their specific applications.

The main problem with the Haar wavelets is the fact that they are
not continuous (which is mostly fine for digital processing and they
play a huge role in e.g. compression algorithms).

On the other extreme, we could think of having smooth wavelets.
It turns out, however, that in such case they cannot be compactly
supported (as the Haar wavelets are). Hence the moving “window” is
never bounded, but it acts more as a lense which can magnify certain
areas. The best we can do is to have smooth wavelets in the Schwartz
class.

But perhaps the most interesting case is the intermediate one,
when – according to our needs – we may trade-off the size of the win-
dow for the regularity of the function (the more derivatives the wavelet
has, the wider its support has to be).

We will discuss several useful examples at the end of this section,
but now let us abstract the general framework.

Definition 3.1. An orthogonal multiresolution analysis. is a
family of closed subspaces Vn of L2pRq indexed by Z that has the fol-
lowing properties:

(1) ¨ ¨ ¨ Ă V´2 Ă V´1 Ă V0 Ă V1 Ă V2 Ă ¨ ¨ ¨ ;
(2)

Ş

nPZ Vn “ t0u and cl
´

Ť

nPZ Vn

¯

“ L2pRq;
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(3) fpxq P Vn if and only if fp2xq P Vn`1 for n P Z.
(4) fpxq P V0 if and only if fpx´ kq P V0 for k P Z.
(5) There exists a scaling function φ whose translates φpx ´ kq

with k P Z form an orthonormal basis of V0.

Of course, all these properties are satisfied for the sequence of
spaces Vn we discussed in the Haar case. The other important in-
gredient are the wavelets themselves, which define (or are defined by)
spaces Wn.

Definition 3.2. A function ψ on R is called a wavelet if ψ P L2pRq
and the family of functions

ψn,kpxq “
?

2nψp2nx´ kq,
where n, k P Z, is an orthonormal basis of L2pRq.

The wavelet function ψ may be obtained from the scaling func-
tion φ. Let φ P V0 Ă V1 be the scaling function of the multiresolution
analysis tVnunPZ. Since tφp2x ´ kqukPZ is the orthonormal basis of V1,
there exists a sequence tcku P `2pZq such that

φpxq “
ÿ

kPZ

ck φp2x´ kq.

Then the required wavelet is obtained by

ψpxq “
ÿ

kPZ

p´1qk´1ck φp2x` k ´ 1q.

Of course, the main problem is finding the correct coefficients ck.
In the literature the (scaled) functions φ are sometimes called fa-

thers and the functions ψ – mothers, but from the biological perspective
it makes no sense. It’s rather a process of mitosis.

Different examples of wavelets include (here without the correct
normalizing constants that make them have a unit L2-norm!)
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Figure 4. The Gaussian wavelet ψpxq “ xe´x
2
.
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Figure 5. The Ricker wavelet (also known as the Mex-

ican hat wavelet) ψpxq “ p1´ x2qe´x2 .

´2 2

´1

1

Figure 6. The Shannon wavelet (Fourier dual of the
Haar wavelet).

4. Non-orthogonal multiresolution analysis

This is an optional section. The assumption of orthogonality of the
basis defined by the scaling function φ is sometimes to restrictive, and
an unnecessary one. To resolve this issue, we define a Riesz system.

Definition 4.1. In a Hilbert space H a set of vectors txnu is a
Riesz system, if there exist constants 0 ă A ď B ă 8 such that for
any finite set of complex numbers tanu we have

A
ÿ

n

|an|2 ď
›

›

›

›

ÿ

n

anxn

›

›

›

›

2

H
ď B

ÿ

n

|an|2.

Clearly, an orthonormal system is a Riesz system if and only if
A “ B “ 1 (for the optimal choice of A and B). A Riesz system
is a Riesz basis if in addition it is a basis, i.e. the relevant linear
combinations are dense.

Then we can define a non-orthogonal multiresolution analysis by
replacing condition (5) with

(5’) There exists a scaling function φ whose translates φpx ´ kq
with k P Z form a Riesz basis of V0.

As an example we may consider as the scaling function φ a tent func-
tion, which is compactly supported, like the Haar wavelet, but also
continuous.
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Figure 7. The tent function.

In this case we have A “ 1{3 and B “ 1, so the resulting basis is
not orthonormal.

The tent function is also the simplest example of a spline, which may
be specifically designed for the given purpose. A spline is a continuous
function with compact support, which is piecewise linear, or is built
with other polynomials of a given degree.

5. Wavelet transform

To conclude, we define an analogue of the Fourer transform– the
wavelet trasform. It is a sort of a generalization of MRA.

Definition 5.1. Let ψ be continuous wavelet function. We define
the wavelet transform

Wf pa, bq “ 1
a|a|

ż

R
fpxqψ

ˆ

x´ b
a

˙

dx.

As in the case of the Fourier transform, a basic question concerns
the inverse transform. It is given by the formula

fpxq “ 1

Cψ

ż

R

ż

R

1

a2
a|a|ψ

ˆ

x´ b
a

˙

Wf pa, bq db da,

where

Cψ “ 2π

ż

R

| pψpξq|2
|ξ| dξ.
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Questions:

‚ Do you understand the problem of calculating the Fourier
transform of a progressing signal, which is not periodic, but
may be “locally periodic”?

‚ Do you understand the idea behind the multiresolution ana-
lysis and the difference between the sequences of spaces tVnu
and tWnu?

Problems:

Problem 1. Prove that L2pRq “ V0 ` cl
´

À

nPNWn

¯

, where V0

and Wn are defined for the Haar wavelets.

Problem 2. Let φpxq “ p1´|x|q` be the tent function. Show that
tφpx´ kqukPZ is not an orthonormal basis, but it is a Radon basis.


