
Fourier Analysis

TMA4170

Mi losz Krupski

Ferdinand Hodler, Lake Thun with symmetrical reflection, 1905

Musée d’Art et d’Histoire (Geneva)

Based on translations of lecture notes by J. Dziubański, G.  Lysik, G. Plebanek and
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CHAPTER 1

Introduction

1. Heat equation.

Consider a metal rod of length l with a given initial distribution of
temperature. We want to describe how the heat dissipates over time.
Temperature of the rod at point x satisfies

(1)
B
Btupt, xq “

B2
Bx2upt, xq, t ą 0, 0 ă x ă l.

Suppose the initial distribution of heat at time t “ 0 is given by

(2) up0, xq “ fpxq, 0 ď x ď l

and the ends of the rod have the same temperature

(3) upt, 0q “ upt, lq “ 0, t ě 0

(for simplicity we set the temperature to 0, which could mean that
both ends of the rod are immersed in thawing snow). Notice that in
order for conditions (2) and (3) to be consistent we need to assume
fp0q “ fplq “ 0.

We may solve this problem using a method developed by Joseph
Fourier in 18221. Suppose the solution has the form

upt, xq “ T ptq ¨Xpxq.
Then, by using equation (1), we obtain

T 1ptq ¨Xpxq “ T ptq ¨X2pxq
and

T 1ptq
T ptq “

X2pxq
Xpxq .

Notice that the function on left-hand side of the last equation depends
only on the variable t, while the function on the right-hand side only
depends on x. Hence, both functions must be constant, i.e.

T 1ptq
T ptq “

X2pxq
Xpxq “ λ.

It follows that

X2pxq ´ λXpxq “ 0.

1J. Fourier, Théorie analytique de la Chaleur, Didot, Paris, 1822

4



1. HEAT EQUATION. 5

This is a second-order ordinary differential equation, which we may
solve

Xpxq “

$

’

&

’

%

ae
?
λx ` be´

?
λx when λ ą 0,

a cos
`
?´λx˘` b sin

`
?´λx˘ when λ ă 0,

a` bx when λ “ 0.

The function upt, xq satisfies the boundary condition (3), therefore

Xp0q “ Xplq “ 0.

It follows that

a “ b “ 0, when λ ą 0 or λ “ 0 or λ R
!

´ π2k2

l2
: k P N

)

;

and

a “ 0, b — free, when λ P
!

´ π2k2

l2
: k P N

)

.

Let k P N and λ “ ´π2k2

l2
. We have

(4) Xpxq “ bk sin
´πk

l
x
¯

,

where bk may be any real number, as well as

T 1ptq “ λT ptq “ ´π
2k2

l2
¨ T ptq.

The last equation is solved by

(5) T ptq “ exp
´

´ π2k2

l2
t
¯

.

If we combine (4) and (5), we get

ukpt, xq “ bk exp
´

´ π2k2

l2
t
¯

sin
´πk

l
x
¯

.

Because equation (1) is linear and uk satisfy condition (3) for every
k P N, the following sum

uNpt, xq “
N
ÿ

k“0

bk exp
´

´ π2k2

l2
t
¯

sin
´πk

l
x
¯

is also a solution for every N P N. Notice that this sum is no longer
of the form uNpt, xq “ T ptqXpxq.

We still need to consider the initial condition (2). We have

ukp0, xq “ bk sin
´πk

l
x
¯

.

and

(6) uNp0, xq “
N
ÿ

k“0

bk sin
´πk

l
x
¯

.



6 1. INTRODUCTION

Thus, if the function f may be represented in the form (6), uN is a
solution we are looking for (here we disregard the question whether it
is the only solution). However, it is clear that even though we may
select the coefficients bk freely, this is a very limited class of functions.

Instead of considering the finite sum (6), it is therefore tangible to
ask the following question: Given a function f in a certain class, can
it be represented as a series, or infinite sum,

fpxq “
8
ÿ

k“0

bk sin
´πk

l
x
¯

?

2. Trignonometry and complex functions.

Before proceeding further, we need to recall some basic facts in
trignonometry and complex analysis.

In the simplest way, sine and cosine are defined by relations between
sides in a triangle (Figure 1).

sinα
tanα

α
cosα

Figure 1. Values of sinα, cosα and tanα given as
lengths of coloured segments in a circle of radius 1.

We also have

d

dx
sinx “ cosx,

d

dx
cosx “ ´ sinx.

We may then discover the analytical expressions in the form of power
series

sinx “
8
ÿ

n“0

p´1qnp2n` 1q!
x2n`1

, cosx “
8
ÿ

n“0

p´1qnp2nq!
x2n

,

and use those to define and extend the functions onto the real line,
making them 2π-periodic. (Figure 2).
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2 sinpxq
cospxq

Figure 2. Functions sinpxq and cospxq on the real line,
x given in radians.

We use sine and cosine to define the other trigonometric functions

tanx “ sinx

cosx
, cotx “ cosx

sinx
,

secx “ 1

cosx
, cscx “ 1

sinx
,

which we call tangent, cotangent, secant and cosecant, respectively.
Let z P C. The exponential function is defined by a series

ez “ exppzq “
8
ÿ

n“0

zn

n!
.

For z, w P C we have

ez`w “ ezew, ez “ ez

In particular, ex`iy “ exeiy. If we consider z “ ix, we have

eix “
8
ÿ

n“0

pixqn
n!

“

“
8
ÿ

n“0

p´1qnx2n
p2nq! ` i

8
ÿ

n“0

p´1qnx2n`1
p2n` 1q! “ cospxq ` i sinpxq.

This allows us to write the Euler formulas

cosx “ Re eix “ eix ` e´ix
2

, sinx “ Im eix “ eix ´ e´ix
2i

.



CHAPTER 2

Fourier series

1. Periodic functions.

Definition 1.1. Let f : R Ñ R or f : R Ñ C. We say that the
function f is p-periodic, p ą 0 if fpx` pq “ fpxq for every x P R.

It is easy to see that if f is p-periodic, then it is kp-periodic as well
for every k P N.

Definition 1.2. The basic period of a function f is the smallest
positive number p ą 0 such that f is p-periodic, provided such p exists.

Example 1.3. The following function

fpxq “
"

1 when x P Q,
0 when x R Q

does not have a basic period.

In the following we are going to assume that the functions are 2π-
periodic. We do not lose any generality, since if a function g is p-
periodic, p ą 0, then fpxq “ gp px

2π
q is 2π-periodic and vice-versa.

Notice that 2π-periodic functions may be equivalently treated as
functions on a torus (unit circle) T “ S1. Trigonometric functions are
basic examples of 2π-periodic functions.

Definition 1.4. The following infinite set of functions

tsinnx, cosnxunPN0 “ t1, sinx, cosx, sin 2x, cos 2x, . . .u
is called the trigonometric system.

Lemma 1.5. The trigonometric system is an orthogonal system, i.e.
if fj, fk P tsinnx, cosnxunPN0, then

ż 2π

0

fjpxqfkpxq “ cikδik,

where cjk ą 0 are positive numbers.

Lemma 1.6. The set
 p2πq´1{2einx(

nPZ is an orthonormal system,
i.e.

ż 2π

0

1?
2π
einxpxq 1?

2π
eimxpxq “ δnm.

Corollary 1.7. Both systems are linearly independent.

8



3. STONE-WEIERSTRASS THEOREM. 9

2. Trigonometric polynomials.

In many applications (recall the example of the heat equation), we
are interested in considering only real-valued functions. However, it is
often more convenient to study general complex-valued functions.

Definition 2.1. A 2π-periodic function W : RÑ C which may be
expressed in the form

(7) W pxq “ a0 `
N
ÿ

k“1

`

ak cospkxq ` bk sinpkxq˘

for (finite sets of) complex coefficients taku, tbku, is called a trigono-
metric polynomial.

Notice that the function given by expression (6) is an example of
a trigonometric polynomial. A more concise formula to define trigono-
metric polynomials is the following

(8) W pxq “
N
ÿ

k“´N

cke
ikx, tcku Ă C.

Lemmas 1.5, 1.6 provide us with a method of calculating the coef-
ficients of a trigonometric polynomial. Namely, given a trigonometric
polynomial W pxq, we have

W pxq “
ÿ

nPZ

cne
inx,

where

cn “ 1

2π

ż 2π

0

W pxqe´inx dx.
Notice that only a finite number of coefficients cn are non-zero.

3. Stone-Weierstrass theorem.

Let K be a compact space, e.g a bounded subset of Rd or Cd. By
CpKq and CRpKq we denote the spaces of complex-valued and real-
valued continuous functions on K. We consider the following metric
(norm)

d8pf, gq “ }f ´ g}8 “ sup
xPK

|fpxq ´ gpxq|,
which describes the topology of uniform convergence of functions in
CpKq and CRpKq.

Definition 3.1. We say that a set A Ă CRpKq (or A Ă CpKq) is
an algebra if f, g P A implies fg P A, f ` g P A and cf P A for every
c P R (or every c P C).

Remark 3.2. Notice that }fg}8 ď }f}8}g}8, i.e. the } ¨ }8 norm
is submultiplicative.
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Examples 3.3. The following sets are algebras

(1) Polynomials P in CRr0, 1s (or any CRra, bs).
(2) A “ tf P CRpr0, 1sq : fp1

2
q “ 0u.

Lemma 3.4. If A Ă CRpKq is an algebra then clA (uniform limits
of functions from A) is also an algebra.

Proof. If f, g P clA then we may find sequences fn, gn P A such
that }fn ´ f}8 nÝÑ 0 and }gn ´ g}8 nÝÑ 0. We have

}fngn ´ fg}8 “
›

›pfn ´ fqpgn ´ gq ` fpgn ´ gq ` gpfn ´ fq
›

›

8

ď }fn ´ f}8}gn ´ g}8 ` }f}8}gn ´ g}8 ` }g}8}fn ´ f}8.
Thus }fngn ´ fg}8 nÝÑ 0, which means that fg P clA. In a similar way
we show that f ` g P clA and cf P clA for every c P R. �

Definition 3.5. We say that an algebra A Ă CRpKq (or CpKq)
separates points if for every pair of points x1, x2 P K there exists a
function f P A such that fpx1q ‰ fpx2q.

Definition 3.6. We say that an algebra A Ă CRpKq (or CpKq)
does not vanish in K if for every point x P K there exists a function
f P A such that fpxq ‰ 0.

Example 3.7. Algebra of polynomials P Ă Cra, bs does not vanish,
because x ÞÑ 1 P P. Algebra P separates points, because the function
x ÞÑ x is injective (one-to-one).

Lemma 3.8. If A Ă CRpKq is an algebra which separates points
and does not vanish in K, then for every pair of points x1, x2 P K
and numbers a1, a2 P R, we may find a function f P A satisfying
fpx1q “ a1, fpx2q “ a2.

Proof. There exist functions h1, h2, g P A such that

h1px1q ‰ 0, h2px2q ‰ 0, gpx1q ‰ gpx2q.
Let us define functions

upxq “ gpxqh1pxq ´ gpx2qh1pxq,
vpxq “ gpxqh2pxq ´ gpx1qh2pxq.

Then u, v P A and

upx1q ‰ 0, upx2q “ 0, vpx1q “ 0, vpx2q ‰ 0.

Let us notice that the function

fpxq “ a1
upxq
upx1q ` a2

vpxq
vpx1q

satisfies the lemma. �
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Theorem 3.9 (Stone-Weierstrass). Let A Ă CRpKq be an algebra
which separates points and does not vanish in K. Then A is dense in
CRpKq.

Remark 3.10. The following statements are equivalent

(1) A is dense in CRpKq;
(2) clA “ CRpKq.
(3) for every continuous function f P CRpKq there exists a se-

quence fn P A such that fn Ñn f (uniformly) in K;

Theorem 3.9 is a consequence of the following three lemmas. From
now on we always assume that A Ă CRpKq is an algebra which sepa-
rates points and does not vanish in K.

Lemma 3.11. If f P clA then |f | P clA.

Proof. We may assume that f ‰ 0. Consider

g “ 1

2

f

}f}8 .

Then }g}8 “ 1
2
. Therefore |gpxq| ď 1

2
ă 1 for every x P K and we know

that g P clA. It is enough to show that |g| P clA. It follows from the
Weierstrass theorem1 that there exists a sequence of polynomials pnpyq
such that

pnpyq Ñn |y|, ´1 ď y ď 1.

Then

sup
K

ˇ

ˇpnpgpxqq ´ |gpxq|
ˇ

ˇ ď sup
|y|ď1

ˇ

ˇpnpyq ´ |y|
ˇ

ˇ

nÝÑ 0,

thus

pnpgpxqq Ñn |gpxq|, x P K.
Because every polynomial pnpyq “

řN
n“0 cny

n is constructed by only
using operations “allowed” in an algebra, we know from Lemma 3.4
that pnpgpxqq P clA. Therefore |gpxq| P clA. �

Lemma 3.12. If f, g P clA then mintf, gu,maxtf, gu P clA.

Proof. It follows from Lemma 3.11 and the subsequent relations

mintf, gu “ f ` g ´ |f ´ g|
2

, maxtf, gu “ f ` g ` |f ´ g|
2

. �

Remark 3.13. As an immediate consequence we obtain that if
f1, f2, . . . , fn P clA, then mintf1, f2, . . . , fnu and maxtf1, f2, . . . , fnu
belong to clA.

1The sequence of polynomials which approximates y ÞÑ |y| may be constructed
explicitly. Thus we do not have to rely on the Weierstrass theorem and its original
formulation is indeed a special case of the Stone-Weierstrass theorem;
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Lemma 3.14. Let f P CRpKq and x P K. For an arbitrary ε ą 0
there exists a function gx P clA such that

gxpxq “ fpxq
gxptq ą fptq ´ ε, when t P K.

Proof. It follows from Lemma 3.8 that for every y P K there exists
a function hy P clA such that

hypxq “ fpxq, hypyq “ fpyq.
Because hy is continuous, there exists a neighbourhood Uy of the point
y such that hyptq ą fptq ´ ε, for every t P Uy. The neighbourhoods Uy,
y P K cover the set K. By the property of compactness of K, we may
thus choose a finite subcover

K “ Uy1 Y Uy2 Y . . .Y Uyn .
Let us define the following function

gxptq “ max
 

hy1ptq, hy2ptq, . . . , hynptq
(

.

We use the remark following Lemma (3.12) to show that gx P clA. We
also know that gxpxq “ fpxq. Finally, for every t P K, we have t P Uyj
for at least one index j “ 1, 2, . . . , n and so

gxptq ě hyjptq ą fptq ´ ε. �

Lemma 3.15. Let f P CRpKq and ε ą 0. Then there exists a
function h P clA such that

|hpxq ´ fpxq| ă ε for every x P K.
Proof. It follows from Lemma 3.14 that for every point x P K

there exists a function gx P A such that

gxpxq “ fpxq and gxptq ą fptq ´ ε for every t P K.
Because gx is continuous, there exists a neighbourhood Vx of the point
x such that

gxptq ă fptq ` ε for every t P Vx.
The neighbourhoods Vx cover the set K. We select a finite subcover

K “ Vx1 Y Vx2 Y . . .Y Vxn
and define

hptq “ min
 

gx1ptq, gx2ptq, . . . , gxnptq
(

.

It follows from Lemma 3.12 that h P clA. Because gxjptq ą fptq ´ ε
for every j “ 1, 2, . . . , n, we also have hptq ą fptq ´ ε. For every t P K
we have t P Vxj for some index j “ 1, 2, . . . , n and so

hptq ď gxjptq ă fptq ` ε.
As a result

|hptq ´ fptq| ă ε, for every t P K. �
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We now discuss the complex case.

Definition 3.16. An algebra A Ă CpKq is called self-adjoint if
f P A implies f P A.

Theorem 3.17 (Stone-Weierstrass, complex variant). If A is a self-
adjoint algebra in CpKq which separates points and does not vanish,
then A is dense in CpKq.

Proof. Let AR “ tf P A : f “ fu Ă CRpKq and notice that AR
is an algebra in CRpKq. Let us verify that AR satisfies the hypothesis
of Theorem 3.9. We know that for x1 ‰ x2 P K there exists a function
f P A such that fpx1q ‰ fpx2q. Therefore

Re fpx1q ‰ Re fpx2q or Im fpx1q ‰ Im fpx2q.
But Re f, Im f P AR, because algebra A is self-adjoint and

Re f “ f ` f
2

, Im f “ f ´ f
2i

.

Hence AR separates points. For every x P K there exists f P A such
that fpxq ‰ 0. Therefore

Re fpxq ‰ 0 or Im fpxq ‰ 0.

Hence AR does not vanish. By Theorem 3.9 the algebra AR is dense in
CRpKq.

Let f P CpKq. Then f “ Re f` i Im f and both functions Re f and
Im f may be uniformly approximated by functions in AR. Therefore f
may be approximated by functions in A. �

4. Fourier series.

In the same way as in the case of trigonometric series, with an
integrable, 2π-periodic function f we may associate a function series,
which we denote

(9) f „
ÿ

nPZ

cne
inx,

where

(10) cn “ 1

2π

ż 2π

0

fpxqe´inx dx.
The numbers cn are called the Fourier coefficients and denoted

cn “ pfpnq.
By convergence of a (Fourier) series (9) we mean the convergence of
the sequence of its partial sums

SNfpxq “
ÿ

|n|ďN

pfpnqeinx.



14 2. FOURIER SERIES

We already know that in the case when f is a trigonometric polynomi-
als, we have

fpxq “
ÿ

nPZ

cne
inx “ lim

NÑ8
SNfpxq fo every x P Rd.

Our aim now is twofold. First, we want to find as many as pos-
sible functions for which the series (9) converges, and converges to
the function f . Second, when the series diverges, we want to de-
scribe other modes of convergence such that we can still say that
fpxq ” ř

nPZ cne
inx.

Notice that the Stone-Weierstrass theorem is not sufficient for con-
vergence, even when the function is continuous: we may find trigono-
metric polynomials arbitrarily close (in the uniform sense) to any f ,
but they need not match the partial sums of the series (9) (think of the
relation between the Taylor expansion and analytical functions on one
hand, and the Weierstrass theorem about polynomials on the other).
In fact, it turns out that there are continuous functions with divergent
Fourier series.

5. Dirichlet kernel.

Let us denote the n-th partial sum of the Fourier series of a function
f : TÑ C by Snf

Snfpxq “
ÿ

|k|ďn

pfpkqeikx “
ÿ

|k|ďn

1

2π

ż π

´π

fptqe´ikteikx dt

“ 1

2π

ż π

´π

fptq
ÿ

|k|ďn

eikpx´tq dt.

If we define

(11) Dnpxq “
ÿ

|k|ďn

eikx

then we obtain

Snfpxq “ 1

2π

ż π

´π

fptqDnpx´ tq dt.

Definition 5.1. For functions u, v on T the following operation
(in the alebraic sense)

pu ˚ vqpxq “
ż π

´π

uptqvpx´ tq dt

is called the convolution (we omit the question of when it is well-
defined, and how can the underlying group be described).

Hence

Snfpxq “ 1

2π
f ˚Dnpxq.
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Let us calculate the (finite) sum (11) which defines Dnptq

(12)

Dnptq “
n
ÿ

k“´n

eikt “ e´int
2n
ÿ

k“0

eikt

“ e´int
eip2n`1qt ´ 1

eit ´ 1
“ eipn`1qt ´ e´int

eit ´ 1
.

By multiplying the numerator and the denominator by e´it{2 and using
the Euler formulas, we obtain

Dnptq “ sin
`pn` 1

2
qt˘

sin t
2

.

Notice that Dn is an even function. By using the de l’Hôpital rule we
get

lim
tÑ0

sin
`pn` 1

2
qt˘

sin t
2

“ lim
tÑ0

p2n` 1q cos
`pn` 1

2
qt˘

cos t
2

“ 2n` 1,

thus Dn may be extended at 0 to a continuous function by putting
Dnp0q “ 2n` 1. Moreover,

ż π

´π

Dnptq dt “ 2π.

By using the Euler formulas again directly in formula (11), we obtain
yet another representation

(13) Dnpxq “
ÿ

|k|ďn

eikx “ e0 `
n
ÿ

k“1

`

eikx ` e´ikx˘ “ 1` 2
n
ÿ

k“1

cospkxq,

Definition 5.2. The (continuous) function

Dnptq “

$

’

&

’

%

sin
`pn` 1

2
qt˘

sin t
2

when t P r´π, πszt0u
2n` 1 when t “ 0,

is called the Dirichlet kernel.

´π ´π
2

π
2

π
´5

5

10

15

D5ptq
D10ptq

Figure 1. The Dirichlet kernel.
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6. Hilbert spaces

Let H be a linear space over the field C (or R). Recall that a
function x ¨ , ¨ y : H ˆHÑ C (or R) which is

‚ (conjugate) symmetric

xx, yy “ xy, xy;
‚ linear (sesquilinear)

xax` by, zy “ axx, zy ` bxy, zy;
‚ and positive-definite

xx, xy ą 0, x P Hzt0u.
is called an inner product on H.

Definition 6.1. Let H be a linear space over the field C, equipped
with an inner product x ¨ , ¨ y (we say that

`

H, x ¨ , ¨ y˘ is an inner
product space).

An inner product defines the norm (and hence the metric) on H

}x} “
a

xx, xy, dpx, yq “ }x´ y}.
We have the following properties

‚ polarization formula

xx, yy “ 1

4

3
ÿ

k“0

}x` iky}2ik;

‚ parallelogram identity

}x` y}2 ` }x´ y}2 “ 2}x}2 ` }y}2;
‚ law of cosines

}x` y}2 “ }x}2 ` }y}2 ` 2 Re xx, yy;
‚ Cauchy-Schwarz-Bunyakovsky inequality

|xx, yy| ď }x}}y}.
Definition 6.2. We say that the vectors ej P H form an or-

thonormal system if

xej, eky “ δjk, }ej}2 “ xej, ejy “ 1,

where

δjk “
"

0, when j ‰ k,

1, when j “ k.
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Example 6.3. Consider the space H “ CpTq and let

xf, gy “
ż 2π

0

fpxqgpxq dx.

Then x ¨ , ¨ y is an inner product on H. Let

en “ 1?
2π
einx

then tenu is an orthonormal system in
`

H, x ¨ , ¨ y˘.
Definition 6.4. An inner product space which is complete is called

a Hilbert space. A linearly dense orthonormal system is called a Hil-
bert basis, or simply a basis (not to be confused with a linear basis! ).

Definition 6.5. We denote by L2pTq the completion of CpTq with
respect to the inner product

ż 2π

0

fpxqgpxq dx.

(recall that a continuous function on a closed interval is integrable in
both Riemann and Lebesgue sense).

6.1. Bessel inequality.

Theorem 6.6. Let tenu be an orthonormal system in an inner prod-
uct space

`

H, x ¨ , ¨ y˘. For a fixed x let

sn “
n
ÿ

k“1

xx, eky ek

and for an arbitrary sequence taku let

tn “
n
ÿ

k“1

akek.

Then

}x´ sn}2 ď }x´ tn}2.
Moreover, the equality holds only when ak “ xx, eky.

Proof. Let cm “ xx, emy. We have

xx, tny “
n
ÿ

m“1

cmam

and

}tn}2 “
n
ÿ

m“1

|am|2.
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By orthonormality we get

}x´ tn}2 “ }x}2 ` }tn}2 ´ 2 Re xx, tny

“ }x}2 `
n
ÿ

m“1

`|am|2 ´ 2 Re cmam
˘

“ }x}2 ´
n
ÿ

m“1

|cm|2 `
n
ÿ

m“1

|am ´ cm|2.

The last expression attains its minimum when am “ cm. By substitut-
ing am “ cm, we obtain the result. �

Corollary 6.7 (Bessel inequality). If tenu is an orthonormal sys-
tem in

`

H, x ¨ , ¨ y˘, then for every x P H we have
n
ÿ

k“1

ˇ

ˇxx, eky
ˇ

ˇ

2 ď }x}2.

Proof. Using notation from the previous theorem, we have

}x}2 ´
n
ÿ

m“1

|cm|2 “ }x´ sn}2 ě 0. �

Corollary 6.8 (Parseval identity). If an orthonormal system ej
is linearly dense, i.e. the linear combinations of ej constitute a dense
set in H, then

}x}2 “
8
ÿ

k“1

ˇ

ˇxx, eky
ˇ

ˇ

2
.

Proof. Let ε ą 0 and taku be such that }x ´ řN
k“1 akek} ă ε.

Denote ck “ xx, eky. Then
›

›

›

›

x´
N
ÿ

k“1

ckek

›

›

›

›

ď
›

›

›

›

x´
N
ÿ

k“1

akek

›

›

›

›

ă ε.

Hence

0 ď
›

›

›

›

x´
N
ÿ

k“1

ckek

›

›

›

›

“ }x}2 ´
N
ÿ

k“1

|ck|2 ă ε. �

Theorem 6.9 (Parseval identity for Fourier series.). If f P L2pTq
then we have

lim
NÑ8

ż π

´π

ˇ

ˇ

ˇ
fpxq ´ SNfpxq

ˇ

ˇ

ˇ

2

dx “ 0,

ż π

´π

|fpxq|2 dx “ 2π
ÿ

nPZ

ˇ

ˇ pfpnqˇˇ2,

where pfpnq are given by (10) and SNf “ 1
2π
DN ˚ f is the N-th partial

sum of the Fourier series of function f .
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Corollary 6.10 (Riemann-Lebesgue Lemma). If f is an inte-

grable function on T then lim|n|Ñ8
pfpnq “ 0.

Proof.
For those who do not know the Lebesgue integral. Let f P CpTq (or

in fact, f P L2pTq). Then

ÿ

n

| pfpnq|2 “ 1

2π

ż π

´π

|fptq|2 dt.

This proves the lemma, because the series is convergent.
For those who do know the Lebesgue integral. Let f P L1pTq. Take

ε ą 0 and let g P CpTq be such that
ż π

´π

|f ´ g| dx ď ε.

Then
ˇ

ˇ

pgpnqˇˇ ă ε for |n| ą Nε.

Moreover,

ˇ

ˇ pfpnq ´ pgpnqˇˇ “ 1

2π

ˇ

ˇ

ˇ

ˇ

ż π

´π

`

fpxq ´ gpxq˘e´inx dx
ˇ

ˇ

ˇ

ˇ

ď 1

2π

ż π

´π

|f ´ g| dx ă 1

2π
ε,

which proves the lemma. �

7. Pointwise divergence of Fourier series

In Theorem 6.9 we showed convergence of the series of partial sums
of a Fourier series SNf in the norm of the space L2pTq, but we don’t
know whether the series converges pointwise. It turns out that for a
typical continuous function, it is not the case.

Definition 7.1. A subset S of a metric space X is nowhere dense
if the closure clS has an empty interior. In other words, for every open
ball B in X we have Bz clS ‰ H.

Examples 7.2. A finite subset of the real line is nowhere dense.
A countable set Z Ă R is nowhere dense. But a countable union of
nowhere dense sets may not be nowhere dense, e.g. Q Ă R is dense.
The Cantor set C Ă r0, 1s is nowhere dense even though it is uncount-
able.

Definition 7.3. A set S is a first category set (or meagre) if S
is a countable sum of nowhere dense sets in X.

Example 7.4. Q is a first category set, which is itself not nowhere
dense.
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Remark 7.5. A countable sum of first category sets is a first cate-
gory set.

Recall that a bounded linear operator T : X Ñ Y between normed
spaces X and Y is continuous

}Txn ´ Tx} “ }T pxn ´ xq} ď C}xn ´ x} Ñ 0, if xn Ñ x.

We define the operator norm as

}T } “ sup
xPX,x‰0

}Tx}Y
}x}X .

Theorem 7.6 (Banach-Steinhaus). Let X and Y be normed spaces.
If F is a family of bounded linear operators from X to Y then either
the set of numbers t}T } : T P Fu is bounded or

tx P X : sup
TPF

}Tx} ă 8u
is a first category set in X.

Remark 7.7. If the set t}T } : T P Fu is bounded, i.e. there exists
a number c ą 0 such that }T } ď c for all T P F , then

}Tx} ď }T }}x} ď c}x}, x P X, T P F .
Hence tx P X : supTPF }Tx} ă 8u “ X.

Proof. Assume that

A “ tx P X : sup
TPF

}Tx} ă 8u
is not a first category set. Let

An “ tx P X : sup
TPF

}Tx} ď nu.
Then

A “
8
ď

n“1

An.

The sets An are closed, because if xk P An and xk Ñ x, then

}Tx} “ lim
k
}Txk} ď n.

Therefore for some n the set An contains a ball

An Ą Brpx0q “ tx P X : }x´ x0} ď ru.
Let }y} ď r. Then y ` x0 P Brpx0q Ă An. Therefore

}Ty} “ }T py`x0q´Tx0} ď }T py`x0q}`}Tx0} ď n`n “ 2n.

For every x ‰ 0 the element y “ r x
}x}

satisfies }y} “ r, thus

}Tx} “ }Ty}
r
}x} ď 2n

r
}x},
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which means that

}T } ď 2n

r
, T P F . �

Corollary 7.8 (duBois Reymond). There exists a continuous
function f P CpTq such that Snf diverges at a point.

Proof. Notice that f ÞÑ Tnf “ 2πSnfp0q “ Dn ˚ fp0q is a family
of bounded linear operators, Tn : CpTq Ñ C. We are going to show
that the set t}Tn} : n P Nu is unbounded.

Let φn be a sequence of continuous functions such that |φn| ď 1,
each of which is equal to sgnDn except for small neighbourhoods of its
zeroes. Suppose those neighbourhoods are of the length p2nq´2 and we
know that Dn has exactly 2n zeroes. Denote the sum of those intervals
by In. Then we have |In| “ 1

2n
and

ż

In

|Dnpxq| dx`
ˇ

ˇ

ˇ

ˇ

ż

In

φnpxqDnpxq dx
ˇ

ˇ

ˇ

ˇ

ď 2|In|p2n` 1q ă 3.

Therefore

}Tn} ě }Tnφn} “
ˇ

ˇ

ˇ

ˇ

ż

T
φnpxqDnpxq dx

ˇ

ˇ

ˇ

ˇ

ě
ż

Icn

|Dnpxq| dx´
ˇ

ˇ

ˇ

ˇ

ż

In

φnpxqDnpxq dx
ˇ

ˇ

ˇ

ˇ

“
ż

T
|Dnpxq| dx´

ż

In

|Dnpxq| dx´
ˇ

ˇ

ˇ

ˇ

ż

In

φnpxqDnpxq dx
ˇ

ˇ

ˇ

ˇ

ą 1

π

n
ÿ

k“1

1

k
´ 3.

This means that the set of norms }Tn} is unbounded. By the Banach-
Steinhaus theorem there exists a function f such that Snfp0q is not
convergent. In fact, the set of such functions is residual (a complement
of a first category set), i.e. we are extremly lucky if we find a function
for which the series converges at every point. �

Lemma 7.9. We have

ż π

´π

|Dn| ě 1

π

n
ÿ

k“1

1

k
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Proof. Notice that sinx ď x for x ě 0. We have
ż π

´π

|Dnpxq| dx “ 2

ż π

0

| sinppn` 1
2
qx|

sin x
2

dx

ě 2

ż π

0

| sinppn` 1
2
qx|

x
2

dx ě
ż πpn` 1

2
q

0

| sinx|
x

dx

ě
n
ÿ

k“1

ż πk

πpk´1q

| sinx|
x

dx ě
n
ÿ

k“1

1

πk

ż 1

0

| sinx| dx.

Hence
şπ

´π
|Dnpxq| dx ě 1

π

řn
k“1

1
k
. �

8. Pointwise convergence of Fourier series

Notice that the definition of the coefficients of the Fourier series is
non-local, i.e. by changing a function at any point, the exact values of
its Fourier coefficients may change far away from this point.

Nevertheless, we have the following result, which says that a small
modification is not going to affect convergence of the series at a dis-
tance.

Theorem 8.1 (Riemann Localization Principle). If f P CpTq is
zero in a neighbourhood of x, then limnÑ8 Snfpxq “ 0.

Because of linearity, this formulation it is equivalent to saying that
if two functions agree in a neighbourhood of x, then their Fourier series
behave in the same way at x.

Proof. Suppose that fptq “ 0 on px´ δ, x` δq. Then

Snfpxq “
ż

δď|t|ďπ

fpx´ tqsinppn`
1
2
qtq

sinp t
2
q dt.

Let

gptq “ fpx´ tq
2i sinp t

2
q1δď|t|ďπptq.

Then gptq P L2pTq and because of the Euler formulas we have

fpx´ tq1δď|t|ďπptqsinppn`
1
2
qtq

sinp t
2
q

“ 2igptq sin
`pn` 1

2
qt˘ “ 2igptqe

ipn` 1
2
qt ´ e´ipn` 1

2
qt

2i

“ gptqeit{2eint ´ gptqe´it{2e´int.
Thus for g1ptq “ gptqeit{2 and g2ptq “ gptqe´it{2 we obtain

Snfpxq “
ż π

´π

´

gptqeit{2eint ´ gptqe´it{2e´int
¯

dt

“ pg1pnq ` pg2p´nq
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By the Riemann-Lebesgue lemma we have pg1pnq Ñ 0 and pg2p´nq Ñ 0
and we conclude that

lim
nÑ8

Snfpxq “ 0. �

Definition 8.2. We say that f is a functon of bounded variation
on an interval ra, bs if it is the difference of two bounded monotone
functions2.

We also introduce the following notation for right and left limits of
a function at a point

fpx`q “ lim
yÑx`

fpyq fpx´q “ lim
yÑx´

fpyq.
The distinction is of course only important if the function is not con-
tinuous at x.

Lemma 8.3 (Second mean value theorem for integrals). If h is pos-
itive monotonically increasing function on ra, bs and φ is integrable on
ra, bs, then there exists c P ra, bq such that

ż b

a

hpxqφpxq dx “ hpb´q
ż b

c

φpxq dx
Proof. It is left as an exercise. �

Theorem 8.4 (Jordan Criterion). If f is a function of bounded
variation in a neighbourhood of x, then

lim
nÑ8

Snfpxq “ 1

2

`

fpx`q ` fpx´q˘

Proof. We may assume that f is monotone in a neighbourhood
of x. Since

Snfpxq “
ż π

´π

fptqDnpx´ tq dt “
ż π

´π

fpx´ tqDnptq dt

“
ż π

0

`

fpx ´ tq ` fpx ` tq˘Dnptq dt,
it suffices to show that for every monotone g we have

lim
nÑ8

ż π

0

gptqDnptq dt “ 1

2
gp0`q.

We may also assume that gp0`q “ 0 and that g is increasing to the right
of 0. Now we need to show that the sequence of integrals converges to
0.

Given ε ą 0, choose δ ą 0 such that gptq ă ε if 0 ă t ă δ. Then
ż π

0

gptqDnptq dt “
ż δ

0

gptqDnptq dt`
ż π

δ

gptqDnptq dt.
2 The functions of bounded variation are usually defined in a different way, but

it requires prior introduction of unnecessary (here, now) formalism.
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By the Riemann Localization Principle, the second integral tends to 0.
To estimate the first integral, we use the second mean value theorem
for integrals. For some y, 0 ă y ă δ we have

ż δ

0

gptqDnptq dt “ gpδ´q
ż δ

y

Dnptq dt.

Furthermore,
ˇ

ˇ

ˇ

ˇ

ż δ

y

Dnptq dt
ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

ż δ

y

sinppn` 1
2
qtq

ˆ

1

sin t
2

´ 2

t

˙

dt

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

ż δ

y

sinppn` 1
2
qtq

t
2

dt

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

ż δ

y

ˇ

ˇ

ˇ

ˇ

1

sin t
2

´ 2

t

ˇ

ˇ

ˇ

ˇ

dt ` 2 sup
Mą0

ˇ

ˇ

ˇ

ˇ

ż M

0

sin t

t
dt

ˇ

ˇ

ˇ

ˇ

ă C

Hence
şδ

0
gptqDnptq dt ă Cε. �

Now we prove another criterion. The two are incomparable, i.e.
there are examples of functions which satisfy hypotheses of one but
not the other, both ways. Other, more general criteria are also known.

Recall that
ż π

´π

Dnptq dt “
ż π

´π

ÿ

|k|ďn

eikt dt “
ż π

´π

ei0t dt “ 2π.

Theorem 8.5 (Dini Criterion). Let f P CpTq and x P T. If there
exists δ ą 0 such that

ż

|t|ăδ

ˇ

ˇ

ˇ

fpx´ tq ´ fpxq
t

ˇ

ˇ

ˇ
dt ă 8,

then limnÑ8 Snfpxq “ fpxq.
Proof. Since the integral of Dn equals 2π

Snfpxq ´ fpxq “
ż π

´π

`

fpx´ tq ´ fpxq˘sinppn` 1
2
qtq

sin t
2

dt

“
ż

|t|ăδ

. . . dt `
ż

δď|t|ďπ

. . . dt

By the Riemann-Lebesgue lemma both of these integrals tend to 0.
The second – if we use the Riemann Localization Principle, the first –
since we assume the function

fpx´ tq ´ fpxq
t

1|t|ăδptq
to be integrable. Indeed, we have

ż

|t|ăδ

|fpx´ tq ´ fpxq|
| sin t

2
| dt “

ż

|t|ăδ

ˇ

ˇfpx´ tq´fpxqˇˇ 2

|t| ¨
ˇ

ˇ

ˇ

ˇ

t
2

sin t
2

ˇ

ˇ

ˇ

ˇ

dt
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and t ÞÑ t
sin t

is a function decreasing to 1 for both tÑ 0` and tÑ 0´.
More particularly,

t

sin t
ď δ

sin δ
for 0 ă t ď δ ă π.

This means that

fpx´ tq ´ fpxq
sin t

2

is integrable and we use the Euler formulas to argue like in the proof
of the Riemann Localization Principle to show that

ż δ

0

fpx´ tq ´ fpxq
sin t

2

sinppn` 1
2
qtq dt

converges to 0 as nÑ 8. �

9. Cesàro means and Fejér kernel

. Consider a numerical series

c0 ` c1 ` c2 ` . . . “
8
ÿ

k“0

ck

and let Sn “
řn
k“0 ck be its partial sums. The series is (conditionally)

convergent if the sequence Sn converges. Otherwise, it is divergent.
Notice that the series

8
ÿ

k“0

p´1qk

is divergent. However, the partial sums form the sequence 1, 0, 1, 0, . . .
and one may “intuitively” say, that the “limit” of these numbers is
equal to 1

2
.

Let us try to give it a precise meaning. Consider the arithmetic
mean of the partial sums

σN “ S0 ` S1 ` . . .` SN´1
N

.

If the series σN converges, then we say that the series
ř

cn is summa-
ble in the sense of Cesàro (it does not make it convergent !).

Lemma 9.1. Let cn be a numerical sequence and let

Sn “
n
ÿ

k“0

ck, σN “ S0 ` S1 ` . . .` SN´1
N

.

If limnÑ8 Sn “ a then limnÑ8 σn “ a

We leave the proof as an exercise.
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Definition 9.2. Consider the arithmetic mean of the Dirichlet
kernels

Knpxq “ 1

n` 1

n
ÿ

k“0

Dkpxq.

Kn is called the Fejér kernel.

´π ´π
2

π
2

π

5

10
D5ptq
D10ptq

Figure 2. The Fejér kernel.

Theorem 9.3. The Fejér kernel may also be defined explicitly as

Knpxq “ 1

n` 1

1´ cos
`pn` 1qx˘

1´ cosx

for x ‰ 0 and Knp0q “ n` 1.

Proof. We have from identity (12) that

peix ´ 1qDnpxq “ eipn`1qx ´ e´inx.
Then notice the following identities

peix ´ 1qpe´ix ´ 1q “ 1´ eix ´ e´ix ` 1 “ 2´ 2 cosx,

e´ix ´ 1

eix ´ 1
“ ´e´ix.

Hence

pn` 1qp2´ 2 cosxqKnpxq “
n
ÿ

k“1

`

eipk`1qx ´ e´ikx˘pe´ix ´ 1q

“
ˆ

eix
`

eipn`1qx ´ 1
˘

eix ´ 1
´ e´ipn`1qx ´ 1

e´ix ´ 1

˙

pe´ix ´ 1q
“ eix

`

eipn`1qx ´ 1
˘p´e´ixq ` 1´ e´ipn`1qx

“ 1´ eipn`1qx ` 1´ e´ipn`1qx
“ 2´ 2 cos

`pn` 1qx˘



9. CESÀRO MEANS AND FEJÉR KERNEL 27

and finally

Knpxq “ 1

n` 1

2´ 2 cos
`pn` 1qx˘

2´ 2 cosx
.

We also have

Knp0q “ 1

n` 1

n
ÿ

k“0

p2n` 1q “ pn` 1q2
n` 1

“ n` 1. �

Corollary 9.4. We have Knpxq ě 0 and
şπ

´π
Knpxq dx “ 2π.

Definition 9.5. An approximate identity on T is a family of inte-
grable functions tknu with the following three properties:

(1) There exists a constant c ą 0 such that
şπ

´π
|knpxq| dx ď c for

all n P N.
(2)

şπ

´π
knpxq dx “ 1 for all n P N.

(3) For any neighbourhood δ ą 0 we have
ş

|x|ąδ
|knpxq| dx Ñ 0 as

nÑ 8.

Notice the subtle difference between the first two properties.

Example 9.6. Let kpxq be a continuous function supported within
p´π, πq Ă R with integral one. Let

knpxq “ nkpnxq.
Then knpxq is an approximate identity on T. Here we consider kn as
a restriction of a function defined on R to the interval r´π, πs, but we
know that knp´πq “ knpπq “ 0, so kn P Cperpr´π, πsq ” CpTq.

The last property follows from the fact that
ż

|x|ěnδ

|kpxq| dx “ 0 for nδ ą π.

Lemma 9.7. The Dirichlet kernels multiplied by 1
2π

are not an ap-
proximate identity.

Proof. While we have 1
2π

şπ

´π
Dnpxq dx “ 1, we also know from

Lemma 7.9 that
şπ

´π
|Dnpxq| dx Ñ 8 as n Ñ 8 (note: the third prop-

erty in the definition of approximate identities also fails for the Dirichlet
kernels). �

Lemma 9.8. The Fejér kernels multiplied by 1
2π

are an approximate
identity.

Proof. We have Knpxq ě 0, hence |Knpxq| “ Knpxq and

1

2π

ż π

´π

Knpxq dx “ 1.

Notice that

Knpxq “ 1

n` 1

1´ cos
`pn` 1qx˘

1´ cosx
ď 1

n` 1

2

1´ cosx
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and for x P r´π,´δs Y rδ, πs we have

1´ cospxq ě 1´ cospδq.
Thus for every ε ą 0, we may find n large enough that

Knpxq “ 1

n` 1

1´ cos
`pn` 1qx˘

1´ cosx
ď 1

n` 1

2

1´ cos δ
ď ε

i.e. for every δ ą 0 the sequence of functions Kn converges to 0 uni-
formly on r´π,´δs Y rδ, πs. Therefore

ż

|x|ąδ

Knpxq dxÑ 0 as nÑ 8. �

Remark 9.9. Notice that 1´cosx “ 2 sinpx
2
q2, thus the Fejér kernel

may also be expressed as

Knpxq “ 1

n` 1

ˆ

sin
`pn` 1qx

2

˘

sin x
2

˙2

.

Theorem 9.10. Let kn be an approximate identity on T. If f P
CpTq then }kn ˚ f ´ f}8 Ñ 0 as nÑ 8.

Proof. Let c ě ş

T |knpxq| dx. Since f is continuous and T is com-
pact, we may find δ ą 0 such that

|fpx´ hq ´ fpxq| ă ε

2c
for |h| ă δ and every x P T

and then find N0 ą 0 such that for n ą N0 we have
ż

δď|y|ďπ

|knpyq| dy ă ε

4}f}8 .

Using these estimates we conclude that

sup
xPT

ˇ

ˇpkn ˚ fqpxq ´ fpxq
ˇ

ˇ “ sup
xPT

ˇ

ˇ

ˇ

ˇ

ż

T
knpyqfpx´ yq dy ´ fpxq

ˇ

ˇ

ˇ

ˇ

ď sup
xPT

ż

T
|knpyq|

ˇ

ˇfpx´ yq ´ fpxqˇˇ dy

“ sup
xPT

ˆ
ż δ

´δ

|knpyq|
ˇ

ˇfpx´ yq ´ fpxqˇˇ dy

`
ż

δď|y|ďπ

|knpyq|
ˇ

ˇfpx ´ yq ´ fpxqˇˇ dy
˙

ď ε

2
` ε

2
“ ε,

which shows that kn ˚ f converges uniformly to f on T as nÑ 8. �

Corollary 9.11. If f is a continuous 2π-periodic function then
1
2π
f ˚Kn converges to f uniformly.

We conclude this section with the following observations.
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‚ For f P CpTq, the partial sums of its Fourier series Snf are
examples of trigonometric polynomials.

‚ The partial sums may be represented by convolutions with
Dirichlet kernels Snf “ Dn ˚ f .

‚ The Fejér kernels Kn are the Cesàro means of Dirchlet kernels.
‚ The Cesàro means σnf of the Fourier series of the function f

are the convolutions with the Fejér kernels σnf “ Kn ˚ f .
‚ The convolutions Kn ˚ f are trigonometric polynomials.
‚ Kn ˚ f Ñn f .

Therefore we now have a constructive method of approximating
(uniformly) continuous functions by trigonometric polynomials. Pre-
viously, we had to rely on the Stone-Weierstrass theorem, which only
says that such an approximation exists (but also covers other algebras,
which will be useful when we discuss wavelets).

Moreover, notice that in Theorem 9.10 we could only require the
function f to be continuous on some compact set K around an arbitrary
point t0 and then prove that

sup
xPK

|kn ˚ fpxq ´ fpxq| Ñ 0 as nÑ 8.

Then we would obtain the following result.

Corollary 9.12. If f is a bounded integrable function which is
continuous at t0 then

lim
nÑ8

1

2π
f ˚Knpt0q “ fpt0q.

This means that the Fourier series
ř

n
pfpnqeint of the function f

(bounded) is summable in the sense of Cesàro to the values of f at its
points of continuity.

10. Gibbs phenomenon

If a sequence of continuous functions converges uniformly, then its
limit is also a continuous function. Thus if a function f is discontinuous
at a point x, then its Fourier series cannot be uniformly convergent to
f in the neighbourhood of this point. It turns out that the “tip” of
the largest “wave” of the Fourier series near the discontinuity point
converges to a value which differs from either fpx`q or fpx´) by about
9% of the size of the “jump” |fpx`q ´ fpx´q|. The same can be said
about the smaller “waves”, with smaller differences.

This phenomenon is called after Josiah Willard Gibbs who de-
scribed it in 1899 (it was also observed earlier by Henry Wilbraham
in 1848 and studied in more detail by Bôcher in 1906).

The effects of this behaviour have significant impact in applications,
because it implies that near a point of discontinuity the function cannot
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´π ´π
2

π
2

π

Figure 3. Gibbs phenomenon observed for a function
fpxq “ ˘1

2
; notice the decreasing sequence of waves near

the point of discontinuity.

be well approximated by the partial sums of its Fourier series, no mat-
ter how “long” of a sum we consider. Notice that in the digital world,
all functions are essentially step functions. Fortunately, the Gibbs phe-
nomenon does not occur when using the Cesàro method of summation
(Figure 4) and other methods are also available as a remedy.

´π ´π
2

π
2

π

Figure 4. Gibbs phenomenon is eliminated by Cesàro summation.

Let us describe this effect on the example shown in Figure 3

fpxq “
#´1

2
, when x P r´π, 0q,

1
2
, when x P r0, πq,

whose Fourier series is given by the following series of sines

2

π

8
ÿ

n“0

sinp2n` 1qx
2n` 1

.

Theorem 10.1. If

Snfpxq “ 2

π

n
ÿ

k“0

sinp2k ` 1qx
p2k ` 1q .
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then

lim
nÑ8

max
!

Snfpxq ´ 1

2
: 0 ď x ď π

n

)

“ 1

π

ż π

0

sinu

u
du ´ 1

2
« 0, 089.

Proof. Using the Euler formulas in a way similar to the calculation
of the Dirichlet kernel in expression (12) we have

π
d

dx

`

Sn´1f
˘pxq “

n´1
ÿ

k“0

2 cosp2k ` 1qx “
n´1
ÿ

k“´n

eip2k`1qx

“ e´ip2nxq
2n´1
ÿ

k“0

eixep2ixqk “ e´ip2nxqeix ¨ 1´ e2ip2nxq
1´ e2ix

“ e´ip2nxq ´ eip2nxq
e´ix ´ eix “ sinp2nxq

sinx
.

Therefore

πSn´1pxq “
ż x

0

sinp2nyq
sin y

dy “
ż x

0

sinp2nyq
y

dy `Wnpxq

“
ż 2nx

0

sin y

y
dy `Wnpxq,

where

Wnpxq “
ż x

0

´ 1

sin y
´ 1

y

¯

sinp2nyq dy.

Thanks to the de l’Hôpital rule we obtain

lim
yÑ0

ˆ

1

sin y
´ 1

y

˙

“ lim
yÑ0

y ´ sin y

y sin y

pHq“ lim
yÑ0

1´ cos y

sin y ` y cos y

pHq“ lim
yÑ0

sin y

2 cos y ´ y sin y
“ 0.

Therefore for an arbitrary ε ą 0 we may find a δ ą 0 such that for
every x P p0, δq and every n P N we have

Wnpxq ď
ż x

0

ˇ

ˇ

ˇ

1

sin y
´ 1

y

ˇ

ˇ

ˇ
dy ă ε.

Hence, for x P p0, δq,
ˇ

ˇ

ˇ
Sn´1fpxq ´ 1

2

ˇ

ˇ

ˇ
ď 1

π

ż 2nx

0

sin y

y
dy ´ 1

2
` ε.

Notice that the function

Ipxq “
ż x

0

sin y

y
dy
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attains its maximum at x “ π. Therefore for every n such that n ą π{δ
we obtain

max
0ďnxďπ

ˇ

ˇ

ˇ
Sn´1pxq ´ 1

2

ˇ

ˇ

ˇ
ď max

0ďnxďπ

1

π

ż 2nx

0

sin y

y
dy ´ 1

2
` ε

ď 1

π

ż π

0

sin y

y
dy ´ 1

2
` ε « 0, 089` ε. �

11. Curves on the plane and isoperimetric inequality.

Let us try to find a curve on the complex plane which can be laid
with piece of twine of a given length, say 2π meters and encloses the
largest possible area. We are going to assume that the curve has no
sharp edges (is C1) and does not intersect itself.

Let γpsq “ pxpsq, ypsqq be the parametrization of the curve. With-
out loss of generality we may assume that s P r0, 2πs and |γ1psq| “ 1
(we lay the twine while walking at a constant speed, placing each s

100
-th

centimeter of thread at the point pxpsq, ypsqq.
Theorem 11.1. Let A be the area bounded by the curve satisfying

our assumptions. Then A ď π. The equality holds if and only if γ is a
circle of radius 1.

Proof. We know that x1psq2 ` y1psq2 “ 1. It follows from the
Green theorem for path integrals that

A “ 1

2

ˇ

ˇ

ˇ

ˇ

ż

γ

px dy ´ y dxq
ˇ

ˇ

ˇ

ˇ

“ 1

2

ˇ

ˇ

ˇ

ˇ

ż 2π

0

xpsqy1psq ´ ypsqx1psq ds
ˇ

ˇ

ˇ

ˇ

.

Let xpsq „ ř

ane
ins, ypsq „ ř

bne
ins be Fourier series of x and y. Then

x1psq „
ÿ

anine
ins, y1psq „

ÿ

bnine
ins

are the Fourier series of their derivatives. From the Parseval identity
we have

A “ π
ˇ

ˇ

ˇ

ÿ

n

npanbn ´ bnanq
ˇ

ˇ

ˇ
,

ÿ

n

|n|2
´

|an|2 ` |bn|2
¯

“ 1.

Notice that

(14) |anbn ´ bnan| ď 2|an||bn| ď |an|2 ` |bn|2.
Because |n| ď |n|2, we have

A ď π
ÿ

n

|n|2
´

|an|2 ` |bn|2
¯

“ π.

If A “ π then, because |n| ă |n|2 when |n| ą 1, we have

xpsq “ a´1e
´is ` a0 ` a1eis,

ypsq “ b´1e
´is ` b0 ` b1eis.
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The functions xpsq, ypsq are real. Therefore a´1 “ a1 and b´1 “ b1,
which implies p|a1|2 ` |b1|2q “ 1

2
. Moreover, inequalities (14) must

reduce to equalities. This gives us |a1|2 “ |b1|2 “ 1
4
. Hence

a1 “ eiα

2
, b1 “ eiβ

2
.

From |anbn´ bnan| “ 1
2

it follows that | sinpα´βq| “ 1, that is α´β “
kπ ` π{2. Finally,

xpsq “ a0 ` cospα ` sq, ypsq “ b0 ˘ sinpα ` sq.
Let z0 “ a0` ib0. Notice that the curve γ is described by the mapping
γpsq “ z0` eipα˘sq, which is exactly like tracing the unit circle centered
at the point z0, starting at the phase α and going either “left” or
“right”. �

We now ask kind of an opposite question: given a trigonometric
polynomial, or a convergent Fourier series of a continuous function on
T, how to draw the curve it descibes on the complex plane?

Recall that

cn “ 1

2π

ż 2π

0

fptqe´int dt,
hence

c0 “ 1

2π

ż 2π

0

fptq dt,
is the mean value of f . If the curve was made of a uniform cord, c0
would be its centre of mass (arguably, the best approximation of a
curve by a single point). Then

c1 “ r1e
iθ1 , c´1 “ r´1e

iθ´1

is a pair of vectors and so on for each |n|. We are going to treat t as
an angle changing from 0 to 2π ” 0 in 1 second at a constant speed.
At t “ 0 we have

fp0q “
ÿ

nPZ

cn,

It is simply a sum (possibly infinite) of vectors pointing at the spot
on the curve, where we started its parametrization. Then t turns by
a small angle as we trace the curve. Let us look at the individual
components of the sum

fptq “
ÿ

nPZ

cne
int.

We may notice that for each n P Z, the mapping t ÞÑ rne
ipθn`ntq de-

scribes in a unique way the movement with frequency |n| hertz along
a circle of radius rn centered at 0, which starts at the phase θn and
travels in one or the other direction.
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Thus after time t has passed, on the one hand, we moved along the
curve, and on the other, we need to add all the vectors, each of which
has turned at its own speed, in its own direction along its own circle.
Hence the curve is an image of epicicles of epicicles of epicicles. . . all
the way down. In essence, this is what the geo-centric Ptolemaic view
of the Solar system aimed to model. It is not wrong, in this sense, but
horrendously complicated.

A beautiful visualization of this behaviour and further explanations
may be found on an excellent YouTube channel 3blue1brown:

‚ https://www.youtube.com/watch?v=r6sGWTCMz2k
‚ https://www.youtube.com/watch?v=-qgreAUpPwM

12. Temperature of the Earth3

Consider the yearly fluctuation of temperature at a given point on
Earth and assume it is a periodic function of time. Then the temper-
ature upt, xq at time t ě 0 and depth x ě 0 below that point is also
periodic in t for every x. It is natural to assume that }u}8 ď }f}8 ă 8.
Let us adjust units of time and space such that the length of the year
is 2π and the temperature conductivity of the soil equals 1

2
(in reality

the latter is about 2 ¨ 10´3 cm
2

s
). Then we have

B
Btupt, xq “

1

2

B2
Bx2upt, xq

and

upt, xq “
ÿ

nPZ

cnpxqeint,

where

cnpxq “ 1

2π

ż 2π

0

upt, xqe´int dt.
We thus also have

(15)

B2
Bx2 cnpxq “

1

2π

ż 2π

0

B2
Bx2upt, xqe

´int dt

“ 1

2π

ż 2π

0

2
B
Btupt, xqe

´int dt “ 2incnpxq

“ `

a

|n|p1˘ iq˘2cnpxq,
where the sign is ` for n ą 0 and ´ for n ă 0. Moreover,

cnp0q “ 1

2π

ż 2π

0

fptqeint dt “ pfpnq.
A general solution to equation y2 “ ay is

ypxq “ αe
?
ax ` βe´?ax,

3Adapted from Dym & McKean and Sommerfeld
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but we assume |cnpxq| ď }f}8, hence by solving (15) we obtain

cnpxq “ pfpnqe´p
?
|n|p1˘iqxq.

In this way we arrive at the solution

upt, xq “
ÿ

nPZ

pfpnqe´
?
|n|xeint¯i

?
|n|x.

This means that the temperature at depth x, at the level of n-th “com-
ponent” eint, is damped by the factor expp´a|n|xq and is shifted in

time by
a|n|x.

Let the annual surface temperature be given by the sine function

fptq “ eit ´ e´it
2i

.

Then pfp1q “ pfp´1q “ 1
2i

and

upt, xq “ e´xeipt´xq ` e´xe´ipt´xq
2i

“ e´x sinpt´ xq.
At the depth x “ π the function is damped by e´π « 1

25
and completely

out of phase with the seasons – warmest in winter and coolest in sum-
mer. If we repeat this calculation with true units, we can discover that
this depth is about 4 meters, which is therefore the correct choice for
a root cellar.

The same calculation may be performed for daily fluctuations of
temperature. In this case we may discover that the same phenomenon
occurs already at the depth of 20 cm.



CHAPTER 3

Fourier transform

1. Schwartz class

Definition 1.1. The space

SpRq “  

f P C8pRq : lim
|x|Ñ8

|x|N ˇˇ dn
dxn

fpxqˇˇ ă 8
for every pair n,N P N(

is called the Schwartz class or the space of rapidly decaying func-
tions. Let

pn,Npfq “ sup
xPR

|x|N ˇˇ dn
dxn

fpxqˇˇ.

We say that fk converges to f in SpRq if pn,Npfk ´ fq kÝÑ 0 for every
pair n, N .

In simple words, the space SpRq contains those smooth functions
which together with all their derivatives decay to 0 stronger than any
polynomial grows to 8.

The space SpRq is linear and completely metrizable, but it is not
normed (it is a so-called Fréchet space).

Remark 1.2. We may characterize the space SpRq in another,
equivalent way. The function f belongs to SpRq if and only if for every
pair n,N P N there exists a constant Cn,N such that

ˇ

ˇ

`

dn

dxn
f
˘pxqˇˇ ď Cn,N

`

1` |x|˘´N .
Proposition 1.3.

‚ If f P SpRq, then f 1pxq, xfpxq, fpx´ hq also belong to SpRq;
‚ the class SpRq is an algebra;
‚ C8c pRdq Ă SpRq;
‚ the function x ÞÑ e´x

2
belongs to SpRq.

Definition 1.4. For f P SpRq we define

pfpξq “
ż 8

´8

fpxqe´2πixξ dx.

We call pf the Fourier transform of f .

Lemma 1.5. If f P SpRq and n P N then zdn

dxn
fpξq “ p2πiξqn pfpξq

and dn

dξn
pf “ `p´2πixqnfpxq˘p.

36
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Proof. We have
ż R

´R

f 1pxqe´2πixξ dx

“ `

fpxqe´2πixξ˘ˇˇx“R
x“´R

´ 2πiξ

ż R

´R

fpxqe2πixξ dx
and by taking the limit with R Ñ 8 we obtain the result for the first
derivative. Now the general result follows from repeating the same
argument.

Consider

pfpξ ` hq ´ pfpξq
h

´ `´ 2πi{xfpxq˘pξq

“
ż 8

´8

fpxqe´2πixξ
ˆ

e´2πixh ´ 1

h
` 2πix

˙

dx

Notice that

sup
hPR

ˇ

ˇ

ˇ

ˇ

e´2πixh ´ 1

h

ˇ

ˇ

ˇ

ˇ

ď Cp1` |x|q
and so, because f is a rapidly decaying function, we can find R large
enough that

ż

|x|ąR

fpxqe´2πixξ
ˆ

e´2πixh ´ 1

h
` 2πix

˙

dx ď ε

independently of h. On the other hand, we may find h small enough
that

ˇ

ˇ

ˇ

ˇ

e´2πixh ´ 1

h
` 2πix

ˇ

ˇ

ˇ

ˇ

ď ε

for all |x| ă R. �

Corollary 1.6. If f P SpRq then pf P SpRq.
Proposition 1.7. Let fpxq “ e´πx

2
on R. Then pfpξq “ fpξq.

Proof. Notice that

pfp0q “
ż 8

´8

e´πx
2

dx “ 1?
π

ż 8

´8

ex
2

dx “ 1.

Moreover,

pf 1pξq “
ż 8

´8

´2πixe´πx
2

e´2πixξ dx

“ i

ż 8

´8

`

d
dx
e´πx

2˘

e´2πixξ dx “ ´2πξ pfpξq.

Let gpξq “ eπξ
2
pfpξq. Then we have

g1pξq “ eπξ
2
pf 1pξq ` 2πξe´πξ

2
pfpξq “ 0,
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which means that g is a constant function and gpξq “ gp0q. But gp0q “
pfp0q “ 1 and thus pfpξq “ e´πξ

2
. �

While e´πx
2

is the most important example of a fixed point of
the Fourier transform, it is not the only one. Others include (every
fourth of) the Hermite polynomials as well as the hyperbolic secant
sechx “ 2

ex`e´x .

Definition 1.8. We define the operation of convolution on SpRq
by

f ˚ g “
ż

R
fpyqgpx´ yq dy.

Proposition 1.9. Let f, g P SpRq, a P C, y P R, n P N and t ą 0.

Denote τyfpxq “ fpx` yq and rfpxq “ fp´xq. We have

(1) zf ` g “ pf ` pg;

(2) xaf “ a pf ;

(3)
p

rf “ r

pf ;

(4) pf “ r

pf ;

(5) xτyfpξq “ e´2πiyξ pfpξq;
(6) f ˚ g P SpRq and zf ˚ g “ pfpg

Definition 1.10. An approximate identity on R is a family of
integrable functions tktu with the following three properties:

(1) There exists a constant c ą 0 such that
ş8

´8
|ktpxq| dx ď c for

all t ą 0.
(2)

ş8

´8
ktpxq dx “ 1 for all t ą 0.

(3) For any neighbourhood δ ą 0 we have
ş

|x|ąδ
|ktpxq| dx Ñ 0 as

tÑ 0.

Lemma 1.11. The family

htpxq “ 1?
t
e´

πx2

t ,

called the heat kernel, is an approximate identity.

Definition 1.12. For f P SpRq we define the inverse Fourier
transform

qfpxq “ pfp´xq “
ż

Rd
fpξqe2πixξ dξ.

Theorem 1.13 (Parseval-Plancharel identity). Let f, g P SpRq.
We have

ż

R
fpxqpgpxq dx “

ż

R

pfpxqgpxq dx
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Corollary 1.14. If f P SpRq then

p pfqq“ f “ p qfqp
Proof. Let Gtpxq “ e´πtx

2
and notice that ht “ xGt. We have

fpxq “ lim
tÑ0

ż 8

´8

fpx´ ξqhtpξq dξ “ lim
tÑ0

ż 8

´8

fpx´ ξqxGtpξq dξ

“ lim
tÑ0

ż 8

´8

pfpξqe2πixξe´πtξ2 dξ “
ż 8

´8

pfpξqe2πixξ dξ
�

Corollary 1.15. Let f, g P SpRq. We have

(1)
ż

R
fpxqgpxq dx “

ż

R

pfpξqpgpξq dξ
(2)

} pf}L2pRq “ }f}L2pRq “ } qf}L2pRq

(3)
ż

R
fpxqgpxq dx “

ż

R

pfpxqqgpxq dx

Lemma 1.16. If fk, f P SpRq and fk Ñ f in SpRq, then pfk Ñ pf in
SpRq

Corollary 1.17. The Fourier transform is a homeomophism from
SpRq onto itself.

In the next theorem we prove that a function and its image under
the Fourier transform cannot be simultaneously localized. It is also the
mathematical argument behind the Heisenberg uncertainty principle in
quantum mechanics.

We measure “localization” by the variance of a probability density,

here given by |ψ|2 and | pψ|2. In quantum mechanics, those correspond
to wave functions.

Theorem 1.18 (Uncertainty principle). Let ψ P SpRq be such that
}ψ}L2pRq “ 1. Then

ˆ
ż

R
x2|ψpxq|2 dx

˙ˆ
ż

R
ξ2| pψpξq|2 dξ

˙

ě 1

16π2
.

Proof. Integrating by parts we obtain

1 “
ż

R
|ψpxq|2 dx “ ´

ż

R
x d
dx
|ψpxq|2 dx

“ ´
ż

R

´

xψ1pxqψpxq ` xψ1pxqψpxq
¯

dx.
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Applying the Cauchy-Schwarz inequality we get

1 ď 2

ż

R
|x||ψpxq||ψ1pxq| dx

ď 2

ˆ
ż

R
x2|ψpxq|2 dx

˙1{2ˆż

R
|ψ1pxq|2 dx

˙1{2

.

Notice that
ż

R
|ψ1pxq|2 dx “ 4π2

ż

R
ξ2| pψpξq|2 dξ. �

Remark 1.19. The equality in above theorem holds only when

ψpxq “ Ae´Bx
2

, B ą 0, A2 “
a

2B{π.
Remark 1.20. The inequality

ˆ
ż

R
px´ x0q2|ψpxq|2 dx

˙ˆ
ż

R
pξ ´ ξ0q2| pψpξq|2 dξ

˙

ě 1

16π2

is also true for every x0, ξ0 P R.

2. Elements of measure theory

Consider a non-empty space X. By PpXq we denote the power
set of X, i.e. the family of all subsets of X.

Definition 2.1. We say that a family R Ď PpXq is a ring (of
subsets of X) if

(1) H P R;
(2) if A,B P R then AYB,AzB P R.

A family R is a field (or alternatively an algebra) if it is a ring and
X P R.

In other words, a field is a family closed under a finite number of
operations on sets like taking unions, intersections, complements or
differences.

Example 2.2. tHu is a ring. If X is an infinite space and R is a
family of all finite subsets of X, then R is a ring, but it is not a field.

Lemma 2.3. Let R be the family of subsets A Ă R, which may be
represented as

(16) A “
n
ď

k“1

rak, bkq,

for some n P N and ak, bk P R. Then R is a ring of subsets of R.
Moreover, every AinR may be represented in a form of (16), where
rak, bkq are pairwise disjoint.
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Proof. We have H “ r0, 0q P R; by the very structure of for-
mula (16) it follows that the family R is closed under finite unions.

Notice that any set of the form ra, bqzrc, dq can only be:

‚ empty
‚ an interval rx, yq,
‚ when a ă c ă d ă b, a set ra, cq Y rd, bq P R.

Now we may use induction to show that ra, bqzA P R for every set A
given by formula (16). Then it follows that R is closed under taking a
difference of two sets. �

Definition 2.4. We say that a family A Ď PpXq is a σ-field or a
σ-algebra (of subsets of X) if

(1) H P A;
(2) if A P A then XzA P A;
(3) if A1, A2, . . . P A then

Ť8

n“1An P A.

In other words, a σ-field is a family closed under countable opera-
tions on sets. Notice that a σ-field is also a ring and a field.

Example 2.5. tH, Xu, PpXq are σ-fields.

The notion of a σ-field is rather an abstract one and it may be diffi-
cult to determine whether a given set belongs to a given σ-field. Most
often, however, we decribe such families by well-understood generating
sets.

Proposition 2.6. If Aα are σ-fields, then
Ş

αAα is a σ-field.

Let F be any family of sets. Because every σ-field is a subset of
PpXq and because of the above proposition, by considering all σ-fields
that contain F and then taking their intersection, we are left with the
smallest σ-field A such that F Ă A. We say that A is generated by
the family F and denote A “ σpFq.

Definition 2.7. The σ-field generated by the family of open sub-
sets of X is called the Borel σ-field and we denote it by BorpRdq.
Elements of BorpRdq are called Borel sets.

Lemma 2.8. The family F of intervals rp, qq, where p, q P Q gener-
ates BorpRq.

Proof. Notice that rp, qq “ Ş8

n“1pp´ 1
n
, qq, thus rp, qq is a count-

able intersection of open sets, and hence belongs to BorpRq. Thus
F Ď BorpRq and σpFq Ď BorpRq.

For every a ă b we may find sequences of rational numbers pn, qn
such that pa, bq “ Ş8

n“1rpn, qnq and thus pa, bq P σpFq
Recall that every open set U Ă R may be represented as U “

Ťprn, snq, where rn, sn P Q (R is a second-countable space).
It follows that BorpRq Ď σpFq. �
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It is not trivial to show that there exists subsets of R which are not
Borel sets. It is even more difficult to construct such sets.

2.1. Set functions. A function defined on a given family of sets
is called a set function (it is only a descriptive name, it is still a
function in a regular sense). Here we only consider positive extended
real-valued set functions, i.e.

µ : F Ñ r0,`8s, F Ď PpXq.
Definition 2.9. We say a set function is additive if for every E,F P

F such that E X F “ H and E Y F P F we have

µpE Y F q “ µpEq ` µpF q
Notice that if only there exists a set E such that µpEq ă 8 and

H P F , then µpEq “ µpE YHq “ µpEq ` µpHq and µpHq “ 0. This
means that either µpHq “ 0 or µpEq “ 8 for every E P F .

From now on we will only consider set functions on rings (or σ-fields,
which are also rings).

Proposition 2.10. Let µ be an additive set function on a ring R
and E,F,Ei P R. We have

‚ if E Ă F then µpEq ď µpF q;
‚ if E Ă F and µpEq ă 8 then µpF zEq “ µpF q ´ µpEq;
‚ if Ei are pairwise disjoint then µ

´

Ťn
i“1Ei

¯

“ řn
i“1 µpEiq.

Definition 2.11. We say a set function µ on a ring R is count-
ably additive if for every pairwise disjoint sequence Ei P R such that
Ť8

i“1Ei P R we have

µ

ˆ 8
ď

n“1

En

˙

“
8
ÿ

n“1

µpEnq.

Notice that since the function is extended real-valued, the expres-
sion above is meaningful both in the case when the series on the right-
and side is convergent and when it diverges to `8.

Proposition 2.12. Let µ be a countably additive set function on a
ring R. For every sequence En P R such that

Ť8

n“1En P R we have

µ

ˆ 8
ď

i“1

Ei

˙

ď
8
ÿ

i“1

µpEiq.

Proof. Let A1 “ E1 and An “ Enz
Ť

iănEi for n ą 1. The sets
An are pairwise disjoint, An Ď En and

Ť8

n“1An “
Ť8

n“1En. Therefore
µpAnq ď µpEnq for every n and because of countable additivity

µ

ˆ 8
ď

n“1

En

˙

“ µ

ˆ 8
ď

n“1

An

˙

“
8
ÿ

n“1

µpAnq ď
8
ÿ

n“1

µpEnq. �
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Definition 2.13. A countably additive set function µ defined on
a σ-field and such that µpHq “ 0 is called a measure.

Examples 2.14.
‚ Let f : X Ñ r0,8s and let R be the ring of finite subsets of
X. Then

µptx1, . . . , xnuq “
n
ÿ

k“1

fpxkq

is an additive set function such that µpHq “ 0.
‚ Choose x0 P X and let µ be defined on PpXq by µpAq “ 1 if
x0 P A, µpAq “ 0 if x0 R A. Then µ is a measure.

Definition 2.15. A measure space is a triplet pX,Σ, µq, where
Σ Ď PpXq is a σ-field and µ : Σ Ñ r0,8s is a measure. We say a
measurable space is

‚ finite if µpXq ă 8 (or probabilistic if µpXq “ 1);
‚ σ-finite if there exist sets En P Σ such that

Ť

nEn “ X and
µpEnq ă 8 for every n;

‚ complete if for every pair of sets E,F such that F Ď E when
E P Σ and µpEq “ 0 then F P Σ (and necessarily µpF q “ 0).

2.2. Outer measures.

Definition 2.16. Let µ be a countably additive set function on a
ring R. For every E Ď X we define the outer measure µ˚ : PpXq Ñ
r0,8s by

µ˚pEq “ inf
!

ÿ

n

µpRnq : Rn P R, E Ď
ď

n

Rn

)

(we assume that infH “ 8).

Throughout the rest of this section we keep the notation for X, R,
µ, µ˚ etc. to denote relevant objects without change once they are
introduced.

Proposition 2.17. The outer measure µ˚ has the following prop-
erties

‚ µ˚pHq “ 0;
‚ if E Ď F Ď X then µ˚pEq ď µ˚pF q;
‚ if En Ď X then µ˚

`
Ť

nEn
˘ ď ř

n µ
˚pEnq.

Proof. The first two statements are easy to prove and the third
is obvious if µ˚pEnq “ 8 for at least single n. Suppose µ˚pEnq ď 8
for every n and fix ε ą 0. Then there exist Rn

k P R such that

En Ď
ď

k

Rn
k and

ÿ

k

µpRn
kq ď µ˚pEnq ` ε

2n
.
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Then
ď

n

En Ď
ď

n.k

Rn
k

and

µ˚
ˆ

ď

n

En

˙

ď
ÿ

n

´

µ˚pEnq ` ε

2n

¯

“
ÿ

n

µ˚pEnq ` ε. �

Given those properties, we say that an outer measure is monotone
and countably subadditive. In general, it is not countably additive on
PpXq, but we are going to prove that it is countably additive on σpRq
(and hence is a measure on σpRq).

Definition 2.18. We say that a set E Ď X is µ˚-measurable if it
satisfies the following Carathéodory condition

µ˚pAq “ µ˚pAX Eq ` µ˚pAX Ecq for every A Ď X.

By Measpµ˚q we denote the family of all µ˚-measurable sets.

Theorem 2.19. The family Measpµ˚q is a σ-field and µ˚ restricted
to Measpµ˚q is a measure.

Proof. We have H P Measpµ˚q and if E P Measpµ˚q then Ec P
Measpµ˚q. Let E,F P Measpµ˚q and A Ď X. Then

µ˚pAq “ µ˚pAX Eq ` µ˚pAX Ecq
“ µ˚pAX E X F q ` µ˚pAX E X F cq ` µ˚pAX Ecq

ě µ˚pA X E X F q ` µ˚pA X pE X F qcq,
because pA X E X F cq Y pA X Ecq Ě A X pEc Y F cq “ A X pE X F qc
and µ˚ is subadditive. The converse inequality is always true, thus
E X F P Measpµ˚q. This means that Measpµ˚q is a field.

Let E,F P Measpµ˚q be a pair of disjoint sets. Then for A Ă X we
have

µ˚
`

AXpEYF q˘ “ µ˚
`

AXpEYF qXE˘`µ˚`AXpEYF qXEc
˘

“ µ˚pA X Eq ` µ˚pA X F q.
Let E1, E2 . . . be a sequence of disjoint sets in Measpµ˚q. By induction
we have

µ˚

˜

AX
ˆ n
ď

k“1

En

˙

¸

“
n
ÿ

k“1

µ˚pAX Ekq.

Notice that by taking A “ X we obtain that µ˚ is an additive set
function on Measpµ˚q.
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Let E “ Ť

En. Because Measpµ˚q is a field and µ˚ is monotone,

µ˚pAq “ µ˚

˜

AX
ˆ n
ď

k“1

En

˙

¸

` µ˚
˜

AX
ˆ n
ď

k“1

En

˙c
¸

ě
n
ÿ

k“1

µ˚pA X Ekq ` µ˚pA X Ecq.

Because µ˚ is countably subadditive, we have

µ˚pAq ě
8
ÿ

k“1

µ˚pAXEkq`µ˚pAXEcq ě µ˚pAXEq`µ˚pAXEcq

and because we always have the converse inequality,

µ˚pAq “ µ˚pAX Eq ` µ˚pAX Ecq.
Therefore E P Measpµ˚q, which means that Measpµ˚q is a σ-field. Mo-
rover, by taking A “ E we get

µ˚pEq “
8
ÿ

k“1

µ˚pE X Ekq ` µ˚pE X Ecq “
8
ÿ

k“1

µ˚pEkq,

which means that µ˚pEq is a measure on Measpµ˚q. �

Theorem 2.20. We have σpRq Ă Measpµ˚q and µpRq “ µ˚pRq for
every R P R.

Proof. Let R P R and A Ď X. If µ˚pAq “ 8, then we have
µ˚pAq ě µ˚pA X Rq ` µ˚pA X Rcq. If µ˚pAq ă 8, then for every
ε ą 0 there exists a sequence of pairwise disjoint sets Rn P R such that
A Ď Ť

nRn and
ř

n µpRnq ď µ˚pAq ` ε. Then by monotonicity of µ˚

and additivity of µ we have

µ˚pAXRq ` µ˚pAXRcq ď
ÿ

n

´

µpRn XRq ` µpRn XRcq
¯

“
ÿ

n

µpRnq ď µ˚pAq ` ε,

thus µ˚pAq ě µ˚pAXRq`µ˚pAXRcq and R P Measpµ˚q. By definition
we have µ˚pRq ď µpRq. If R Ď Ť

nRn for pairwise disjoint Rn P R
then, because µ is countably additive,

µpRq “ µ˚pR X
ď

n

Rnq “
ÿ

n

µpR XRnq ď µ˚pRq �

Theorem 2.21. Suppose X is σ-finite with respect to µ, i.e. there
exist Xn, µpXnq ă 8 such that X “ Ť8

n“1Xn. For every E P Measpµ˚q
there exist A,B P σpRq such that A Ď E Ď B and µ˚pBzAq “ 0.
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Proof. First suppose that X P R and µpXq ă 8. Then for
E P Measpµ˚q and k P N there exist Rk

n P R such that

E Ď
ď

n

Rk
n, µ˚pEq ` 1

k
ě
ÿ

n

µpRk
nq.

Let

B “
8
č

k“1

8
ď

n“1

Rk
n.

Then B P σpRq, E Ď B and for every k P N

µ˚pBq ď
8
ÿ

n“1

µpRk
nq ď µpEq ` 1

k
,

hence µ˚pEq “ µ˚pBq. In the same way we may find C P σpRq such
that Ec Ď C and µ˚pEcq “ µ˚pCq. We have µpXq “ µ˚pEq ` µ˚pEcq,
thus if we let A “ Cc then

µ˚pBq “ µ˚pEq “ µpXq ´ µ˚pEcq “ µpXq ´ µ˚pCq “ µ˚pAq.
This means that µ˚pBzAq “ 0, because µ˚ is additive on Measpµ˚q and
σpRq Ă Measpµ˚q

In the general case we consider a sequence Xn such that µpXnq ă 8
and X “ Ť

nXn and a sequence of rings

Rn “
 

R P R : R Ď Xn

(

.

For E Ď X we define En “ X X Xn and using the first part of the
proof we may find An, Bn P Rn such that An Ď En Ď Bn Ď Xn and
µ˚pBnzAnq “ 0.

Then it suffices to take A “ Ť

nAn and B “ Ť

nBn. �

Summary. The construction of a measure (on a σ-field) from a
countably additive set function on a ring is an important one, but
it is not essential to remember all the fine details. Below is the
summary of the properties that follow from the construction.

Theorem 2.22. Let

‚ X be a non-empty space,
‚ R be a ring of subsets of X (Def. 2.1)
‚ µ : R Ñ r0,`8s be a countably additive set function

(Def. 2.11) such that µpHq “ 0
‚ µ˚ be the outer measure induced by µ (Def. 2.16)
‚ Measpµ˚q be the family of µ˚-measurable sets (Def. 2.18)

Assume that there exist sets Xn P R such that µpXnq ă 8 and
Ť8

n“1 “ X. If

σpRq “  

AYB : A P σpRq, µ˚pBq “ 0
(
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then

(1) The family σpRq is a σ-field and σpRq “ Measpµ˚q.
(2) The outer measure µ˚ is countably additive on σpRq, i.e.

it is a measure on σpRq.
(3) We have µpRq “ µ˚pRq for every R P R; in other words,

µ˚ is an extension of µ onto the σ-field σpRq.
(4) For every E P σpRq and ε ą 0 there exists B “ Ť8

n“1Rn,
Rn P R, such that µ˚pBzEq ă ε.

(5) For every E P σpRq there exist A,B P σpRq, such that
A Ď E Ď B and µ˚pBzAq “ 0.

3. Lebesgue measure

Let R be the ring of subsets A Ă R, which may be represented as

A “
N
ď

n“1

ran, bnq,

for some N P N and an, bn P R. Recall that we may assume that the
intervals ran, bnq are disjoint.

Proposition 3.1. Let ran, bnq be a finite or infinite family of dis-
joint intervals. If

Ť

nran, bnq Ď ra, bq then
ř8

n“1pbn ´ anq ď b´ a.

Proof. If the family is finite, we obtain the result by induction. If
the family is infinite, we notice that for every N P N we have

N
ÿ

n“1

pbn ´ anq ď b´ a

(because the result holds for finite families). Therefore the series is
convergent and the result follows (the sequence of partial sums is non-
decreasing and bounded). �

Proposition 3.2. Let ran, bnq be finite or infinite family of disjoint
intervals. If ra, bq Ď Ť8

n“1ran, bnq then b´ a ď ř8

n“1pbn ´ anq.
Proof. If the family is finite, we prove the result by induction.
For an infinite family the situation is a bit more complicated then

before. For a fixed ε ą 0 we consider a closed (and hence compact)
interval ra, b ´ εs. Then ra, b ´ εq Ď Ť8

n“1pan ´ 1
n
, bnq and because of

compactness we may choose a finite sub-covering

ra, b´ εq Ď ra, b´ εs Ď
N
ď

n“1

`

an ´ ε
2n
, bn

˘

Then we may use the finite case to obtain

b´ a´ ε ď
N
ÿ

n“1

`

bn ´ an ´ ε
2n

˘ ď
8
ÿ

n“1

pbn ´ anq ` ε
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and the result follows because ε may be arbitarily small. �

Lemma 3.3. Let λ : RÑ r0,8s be defined by

λ

ˆ N
ď

n“1

ran, bnq
˙

“
N
ÿ

n“1

bn ´ an,

where ran, bnq are disjoint intervals. The function λ is well-defined (i.e.
it doesn’t depend on the choice of representation of any given set).

Proof. Let

R “
N
ď

n“1

ran, bnq “
K
ď

k“1

rck, dkq,

where ran, bnq are pairwise disjoint and so are rck, dkq. Consider all
possible intersections, In,k “ ran, bnq X rck, dkq. Then every In,k is
either empty or it is an interval. Moreover, for every n P N we have
ran, bnq “

ŤK
k“1 In,k and by the two previous propositions we know that

bn ´ an “
K
ÿ

k“1

λpIn,kq.

We can make a similar observation for intervals rck, dkq. Finally, we
have

N
ÿ

n“1

pbn ´ anq “
N
ÿ

n“1

K
ÿ

k“1

λpIn,kq “
K
ÿ

k“1

pdk ´ ckq �

Lemma 3.4. The function λ : R Ñ r0,8s is a countably additive
set function.

Proof. If ra, bq “ Ť8

n“1Rn and Rn “
ŤKn
k“1rank , bnkq then by the

two propositions we proved before

λ
`ra, bq˘ “ b´ a “

8
ÿ

n“1

Kn
ÿ

k“1

pbnk ´ ankq “
8
ÿ

n“1

λpRnq

The general case follows by induction. �

Theorem 3.5. There exists a unique measure rλ on BorpRq such

that rλ
`ra, bq˘ “ b´ a.

Proof. Because λ is a countably additive set function on a ring

and R “ Ť8

n“1r´n, nq we can prove existence of rλ by consdering the
extension of λ to Measpλ˚q and then the restriction of λ˚ to BorpRq “
σpRq.

We are not going to prove uniqueness (but it is not very difficult).
�

Definition 3.6. We call rλ “ λ the Lebesgue measure.
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Definition 3.7. A measure defined on the σ-field BorpRq is called
a Borel measure.

Theorem 3.8. If C is the Cantor ternary set then λpCq “ 0.

Proof. Consider the sequence of sets

A1 “ p1{3, 2{3q, A2 “ p1{9, 2{9q Y p7{9, 8{9q, . . .
that we consecutively “cut out” in the construction of the Cantor set.
They are pairwise disjoint and each An is itself a finite sum of pairwise
disjoint open intervals. We have λpAnq “ 2n´1 1

3n
. Then

λpCq “ λ

ˆ

r0, 1sz
8
ď

n“1

An

˙

“ 1 ´
8
ÿ

n“1

λpAnq “ 1 ´ 1

2

8
ÿ

n“1

p2{3qn “ 0.

�

Theorem 3.9. The σ-fields BorpRq and Measpλ˚q are not equal.
The measure space pR,BorpRq, λq is not complete. The measure space
pR,Measpλ˚q, λq is complete.

Proof. It can be shown that the cardinality of BorpRq is equal
to c. But the Cantor set has measure zero and therefore all of its
subsets are λ˚-measurable. The cardinality of PpCq is 2c ą c, hence
BorpRq ‰ Measpλ˚q and pR,BorpRq, λq is not complete.

The completeness of pR,Measpλ˚q, λq follows from the construction
of Measpλ˚q. �

Theorem 3.10. For every B P BorpRq and x P R we have x`B P
BorpRq and λpx`Bq “ λpBq.

Proof. Let A be the family of those B P BorpRq, for which all
translations x ` B are Borel sets. Then A certainly contains all open
intervals pa, bq. On the other hand A is σ-field (if A P A then Ac P A
and if An P A then

Ť

nAn P A), hence A “ BorpRq.
For a fixed x consider a set function µ on BorpRq, given by µpAq “

λpx` Aq Then µ is a measure and for every a ă b we have µpra, bqq “
λprx` b, x` bqq “ b´a “ λpra, bqq. It follows that µpRq “ λpRq on the
ring R of finite unions of intervals, and hence µpBq “ λpBq for every
B P BorpRq because of uniqueness of the extension. �

Remark 3.11. In fact all measures on R with the property that
µpBq “ µpx`Bq are given by cλ for some c ě 0.

Corollary 3.12. Consider the restriction of λ to the interval
r´π, πs – T. For every B P BorpTq and t P r´π, πs we have λpeitBq “
λpBq.
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4. Measurable functions

For every function f : X Ñ Y and all sets A Ď X and B Ď Y , we
define the image of A by

f rAs “ tfpxq P Y : x P Au,
and the pre-image of B

f´1rBs “ tx P X : fpxq P Bu.
Pre-image preserves all set operations, for example

f´1
„

č

n

Bn



“
č

n

f´1rBns,

for every sequence of sets Bn Ď Y .

Definition 4.1. We say a function f : X Ñ Y is continuous if the
pre-image f´1rV s of every open set V Ă Y is open in X.

Remark 4.2. Let f : RÑ R be continuous and V Ď R be an open
set. If x0 P f´1rV s then y0 “ fpx0q P V , Becasue V is open, for some
ε ą 0 we have py0´ ε, y0` εq Ď V . Because of the Cauchy definition of
continuity of f at x0, we may find δ ą 0, such that px0 ´ δ, x0 ` δq Ď
f´1rV s, which is equivalent to saying that f´1rV s is open.

Consider a fixed measure space pX,Σ, µq.
Definition 4.3. We say that a function f : X Ñ R is Σ–measur-

able (or simply measurable) if f´1rBs P Σ for every set B P BorpRq
(notice that this definiton is independent of µ).

Lemma 4.4. Let G Ď BorpRq be a family of sets, such that σpGq “
BorpRq, Then a function f : X Ñ R is measurable if and only if
f´1rGs P Σ for every G P G.

Proof. Consider a family A which consists of those B P BorpRq,
for which f´1rBs P Σ. Then A is a σ-field: if An P A and A “ Ť

nAn
then f´1rAns P Σ for every n and f´1rAs “ Ť

n f
´1rAns P Σ. If A P A

then also Ac P A, because

f´1rAcs “ `

f´1rAs˘c P Σ.

Because A is a σ-field, then from G Ď A it follows that BorpRq “
σpGq Ď A, thus A “ BorpRq, which proves that the condition is suffi-
cient. It is clear that it is necessary as well. �

Corollary 4.5. Each of the following implies that f : X Ñ R is
measurable:

‚ tx : fpxq ă tu P Σ for every t P R;
‚ tx : fpxq ď tu P Σ for every t P R;
‚ tx : fpxq ą tu P Σ for every t P R;
‚ tx : fpxq ě tu P Σ for every t P R.
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Proof. Let G be the family of half-lines p´8, tq for t P R. Then
f´1rGs P Σ for G P G thus f is measurable, because G generates
BorpRq. �

Corollary 4.6. If a function f : R Ñ R is continuous then it is
measurable with respect to BorpRq.

Example 4.7. For every A P Σ a function 1A : X Ñ R, where
1Apxq “ 1 for x P A and 1Apxq “ 0 for x R A is called an indicator
(or characteristic) function of a set A. Such a function is measurable,
because 1´1A rU s is an element of the family tH, A,Ac, Xu Ď Σ.

For every B P BorpRq the function 1B is thus a Borel function.
Notice that 1Q is not continuous at any point of the real line, which
shows that measurability is a much more general property.

Lemma 4.8. If a function f : X Ñ R is Σ-measurable and a func-
tion g : R Ñ R is continuous then a function g ˝ f : X Ñ R is
Σ-measurable.

Proof. . For every open set U Ď R, the set g´1rU s is open because
g is continuous; thus

pg ˝ fq´1rU s “ f´1rg´1rU ss P Σ. �

Corollary 4.9. If a function f : X Ñ R is Σ-measurable then

cf, f 2, |f |
are also Σ-measurable.

Lemma 4.10. If functions f, g : X Ñ R are Σ-measurable then the
function f ` g is Σ-measurable.

Proof. . It suffices to show that for h “ f ` g and t P R we have
h´1rp´8, tqs P Σ. But

tx : fpxq ` gpxq ă tu “
ď

p`qăt,
p,qPQ

tx : fpxq ă pu X tx : gpxq ă qu,

which can be easily verified, because Q in dense in R. Notice that the
union in the expression above is countable and hence belongs to Σ. �

Corollary 4.11. If functions f, g : X Ñ R are Σ-measurable then
functions fg, maxpf, gq, minpf, gq are also measurable.

Proof.

fg “ pf ` gq
2 ´ f 2 ´ g2

2
,

maxpf, gq “ |f ´ g| ` f ` g
2

,

minpf, gq “ ´|f ´ g| ` f ` g
2

.

�
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It is convenient to consider functions f : X Ñ RY t´8,8u. Then
it is natural to assume that Σ-measurability of f in addition means
that the sets f´1pt´8uq and f´1pt8uq belong to Σ.

Under such a convention, for any sequence of measurable functions
fn : X Ñ R, we may define for example supn fn, without the need
to assume that the set tfnpxq : n P Nu is bounded for every x P X.
Similarly, we may consider a function fpxq “ lim supn fnpxq.

Lemma 4.12. If functions fn : X Ñ R are Σ-measurable then func-
tions lim infn fn, lim supn fn, infn fn, supn fn are also measurable.

Proof. We are going to show that the function f “ lim supn fn is
measurable. It follows from the identities

tx : fpxq “ 8u “
č

k

č

m

ď

něm

tx : fnpxq ą ku,

tx : fpxq ď tu “
č

k

ď

m

č

něm

tx : fnpxq ă t` 1{ku,

and a similar formula for ´8. The second identity follows from the
fact that fpxq ď t if and only if for every k almost every element
(i.e. all of them except a finite number) of the sequence fnpxq satisfies
fnpxq ă t` 1{k. �

Corollary 4.13. A pointwise limit of a conergent sequence of
measurable functions is measurable.

Intitively, every countable operation involving measurable functions
leads to a measurable function. For example every function R Ñ R
expressed by a formula, which contains countable quantifiers is a Borel
function.

Lemma 4.14. Every Σ-measurable function f : X Ñ R may be
expressed as a difference of two measurable and non-negative functions
f “ f` ´ f´.

Proof. Let f` “ maxpf, 0q, f´ “ ´minpf, 0q �

4.1. Simple functions.

Definition 4.15. A function f : X Ñ R is called simple if its
range f rXs is a finite set.

An indicator function 1A for every set A Ď X is simple. In fact, all
simple functions are finite linear combinations of indicator functions.

Lemma 4.16. A function f : X Ñ R is simple if and only if

f “
N
ÿ

n“1

an1An

for some an P R and An Ď X. A simple function is Σ-measurable if
and only if it is a linear combination of indicator functions of sets in Σ.
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Proof. . If f rXs “ ta1, . . . , aNu then by taking An “ f´1rans we
get f “ ř

nďN an1An .
Reversely, for a function of the form f “ ř

nďN an1An , its range
is contained in a finite set consisting of 0 and all numbers which are
finite sums of elements of the set ta1, . . . , aNu. The second statements
follows from these remarks. �

Theorem 4.17. Let f : X Ñ R be a non-negative, Σ-measurable
function. Then there exists a sequence of measurable simple functions
sn : X Ñ R, such that 0 ď s1pxq ď s2pxq ď . . ., and limn snpxq “ fpxq,
for every x P X. Moreover, if the function f is bounded then the
sequence sn may be chosen such that it converges to f uniformly.

Proof. Fix n and for every 1 ď k ď n2n let

An,k “
"

x :
k ´ 1

2n
ď fpxq ă k

2n

*

.

Then An,k P Σ because the function f is measurable. Let sn be defined
by

snpxq “ k ´ 1

2n
for x P An,k, snpxq “ n for fpxq ą n.

Simple functions sn defined in this way are measurable and non-nega-
tive. If x P An,k for some k then snpxq “ k´1

2n
, while

sn`1pxq “ k ´ 1

2n
or sn`1pxq “ 2k ´ 1

2n`1
,

i.e. snpxq ď sn`1pxq.
For a fixed x and n ą fpxq we have fpxq ě snpxq ě fpxq ´ 1{2n,

which shows that limn snpxq “ fpxq. If f is bounded then for n ą f rXs
we have 0 ď fpxq ´ sn ď 1{2n uniformly in x P X. �

5. Almost everywhere

Theorem 5.1. An additive set function µ on a ring R is countably
additive if and only if it is continuous from below, i.e. for every A P R
and a sequence An P R such that An Ò A, we have limn µpAnq “ µpAq.

Proof. First, let µ be countably additive. For an increasing se-
quence of sets An Ò A let B1 “ A1 and Bn “ AnzAn´1 for n ą 1. Then
A “ Ť

nBn, and Bn are pairwise disjoint. Thus

µpAq “ µ

ˆ 8
ď

n“1

Bn

˙

“
8
ÿ

n“1

µpBnq

“ lim
N

N
ÿ

n“1

µpBnq “ lim
N
µpANq.
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Now suppose µ is continuous from below and consider pairwise dis-
joint An and A “ Ť

nAn P R. Let SN “
ŤN
n“1An. Then SN Ò A and

we have

µpAq “ lim
N
µpSNq “ lim

N

`

µpA1q ` . . .` µpANq
˘ “

ÿ

n

µpAnq,

i.e. the countable additivity. �

Theorem 5.2. For an additive set function µ on a ring R, which
only attains finite values, the following conditions are equivalent (below
always An, A P R)

(1) µ is countably additive;
(2) µ is continuous from above, i.e. limn µpAnq “ µpAq if An Ó A;
(3) µ is continuous from above on the set H, i.e. limn µpAnq “ 0

if An Ó H.

Proof. (1)ñ (2) Let Bn “ A1zAn; then Bn Ò pA1zAq thus because
of the previous theorem

lim
n
pA1zAnq “ lim

n
µpBnq “ µpA1zAq “ µpA1q ´ µpAq,

which implies limn µpAnq “ µpAq.
(2) ñ (3) is obvious; we just take A “ H.
(3) ñ (1) Consider pairwise disjoint sets An and A “ Ť8

n“1An. Let

Sn “
ŤN
n“1An. Then Sn Ò A and

µpAq “ µpA1q ` . . .` µpAnq ` µpAzSnq.
Because limn µpAzSnq “ 0, this implies that the series converges to
µpAq. �

Definition 5.3. For a fixed measure space pX,Σ, µq and measur-
able functions f, g : X Ñ R we say that f “ g µ-almost everywhere
if

µ
`tx : fpxq ‰ gpxqu˘ “ 0.

Being equal µ-almost everywhere is an equivalence relation. We often
write a.e. instead of almost everwhere.

Example 5.4. Identifying functions which are equal almost every-
where has to be done with caution. We have 1Q “ 0 λ-almost every-
where, but 1Q is not continuous at any point, while 0 is. Moreover,
1Q ‰ 0 δx0-almost everywhere, where δx0 is the Dirac measure, when
x0 P Q.

Definition 5.5. A sequence of measurable functions fn : X Ñ R
converges µ ´ almosteverywhere to a function f if there exists a set
E P Σ such that µpEq “ 0 and limn fnpxq “ fpxq for every x P XzE.

Example 5.6. Let X “ r0, 1s and fnpxq “ xn. Then fn Ñ 0
λ-almost everywhere, but fn Ñ 1 δ1-almost everywhere.
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Theorem 5.7. For every λ-measurable function f there exists a
Borel function g such that f “ g λ-almost everywhere.

We already know that every measurable function is a pointwise
limit of a sequence of simple functions and every bounded measurable
function is a uniform limit of simple functions.

The sequence fn : r0, 1s Ñ R, fnpxq “ xn converges to 0 pointwise,
but does not converge uniformly. Notice, however, that for every ε ą 0,
the sequence fn does converge uniformly to 0 on the interval r0, 1´εs. It
can be said that removing a small set improves convergence properties
of the sequence.

Theorem 5.8 (Egorov). If pX,Σ, µq is a finite measure space and
fn : X Ñ R is a sequence of measurable functions converging almost
everywhere to f , then for every ε ą 0 there exists A P Σ such that
µpAq ď ε and fn converges uniformly to f on the set XzA.

Proof. Assume that fpxq “ limnfnpxq for every x P X. In the
general case, we can simply remove the “offending” set of measure zero.
For every m,n P N consider sets

Epm,nq “
8
č

k“n

tx : |fkpxq ´ fpxq| ă 1{mu.

Then for every m we have Epm, 1q Ď Epm, 2q Ď . . . and
ď

n

Epm,nq “ X,

which follows from the fact that fkpxq Ñ fpxq, which means that for
every x there exists k such that |fkpxq´ fpxq| ă 1{m. Let us fix ε ą 0.
Because Epm,nq Ò X, we have XzEpm,nq Ó H and because a finite
measure is continuous from above on the empty set, for every m there
exists nm such that

µ
`

XzEpm,nmq
˘ ă ε{2m.

Then by putting

A “
ď

m

`

X Epm,nmq
˘

,

we obtain

µpAq ď
ÿ

m

µ
`

X Epm,nmq
˘ ď

ÿ

m

ε{2m “ ε.

Moreover, |fnpxq ´ fpxq| ă 1{m for n ą nm and x R A, which implies
uniform convergence of fn on XzA. �

Remark 5.9. The assumption µpXq ă 8 in the Egorov theorem
is important. The sequence fnpxq “ x{n on the real line converges
pointwise to 0, but it is not uniformly convergent on any unbounded
subset of the line.
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The Egorov theorem spurs the following definition.

Definition 5.10. We say that a sequence of measurable functions
is almost uniformly convergent if form every ε ą 0 the sequence
fn converges uniformly on the complement of a set of measure smaller
than ε.

6. Lebesgue integral

6.1. Integration of simple functions. Consider a fixed measure
space pX,Σ, µq. Our goal is to define the integral, i.e. a linear oper-
ator assiging numerical values to functions, which, for a non-negative
function, measures the “area under the graph”.

Because of this, it is clear how the integral should be defnied for
simple functions.

Definition 6.1. If f “ ř

nďN an1An for An P Σ then we define
ż

X

f dµ “
ÿ

nďN

an µpAnq,

if only the expression on the right-hand side is meaningful (including
˘8). We say that the function f is integrable if

ş

X
f dµ has a finite

value.

Remark 6.2. For the symbols 8 and ´8, we assume x`8 “ 8,
x ´ 8 “ ´8 for x P R as well as 0 ¨ 8 “ 0 ¨ p´8q “ 0. Expression
8´8 has no numerical sense nor value.

Remark 6.3. Let f “ 21r0,1s ` c1r3,8s. Then

ż

R
f dλ “

$

’

&

’

%

2, for c “ 0

8, for c ą 0

´8 for c ă 0.

For the function g “ 1r´8,0q ´ 1r1,8q the expression
ş

R g dλ has no
numerical sense.

Lemma 6.4. The integral of a simple function is well-defined, i.e.
if f “ ř

nďN an1An “
ř

kďK bk1Bk then
ÿ

nďN

an µpAnq “
ÿ

kďK

bk µpBkq.

Apart from the integral over the entire space X, we may consider
the integral over any set A P Σ, which we simply define by

ż

A

f dµ “
ż

X

f ¨ 1A dµ.

Theorem 6.5. For a simple measurable function h and simple in-
tegrable functions f and g we have the following
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(1)
ş

X
paf ` bgq dµ “ a

ş

X
f dµ` b ş

X
g dµ;

(2) if h “ 0 almost everywhere then
ş

X
h dµ “ 0;

(3) if f ď g almost everywhere then
ş

X
f dµ ď ş

X
g dµ;

(4) | ş
X
pf ` gq dµ| ď ş

X
|f | dµ` ş

X
|g| dµ;

(5) if a ď f ď b almost everywhere then aµpXq ď ş

X
f dµ ď

bµpXq;
(6) for A,B P Σ, if AXB “ H then

ş

AYB
f dµ “ ş

A
f dµ`ş

B
f dµ.

6.2. Integration of measurables functions. We still assume
we work in a fixed, σ-finte measure space pX,Σ, µq, and all functions
we discuss are assumed to be Σ-measurable.

First we define the integral of a measurable non-negative function
f : X Ñ R. Notice that if s is a non-negative simple function such
that 0 ď s ď f and s “ ř

nďN an1An , where An are pairwise disjoint
and an ě 0 then the condition means that, geometrically speaking, the
rectangles An ˆ r0, ans fit under the graph of the function f and hence
we should have

ş

X
f dµ ě ş

X
s dµ (see Figure 1).

Figure 1. Riemann’s (Darboux’s) idea for approximat-
ing the integral (left) compared with Lebesgue’s (right).

Definition 6.6. For a non-negative measurable function f we de-
fine

ż

X

f dµ “ sup

"
ż

X

s dµ : s is simple and 0 ď s ď f

*

,

The function f is called integrable, if the integral
ş

X
f dµ is finite.

Notice that in fact the integral of a non-negative function f may
be defined as the supremum of value

ş

X
s dµ, taken only for simple

integrable functions. The following theorem often serves as a more
useful definition.

Theorem 6.7. If f is a non-negative measurable function, and sn is
a sequence of simple functions, such that s1 ď s2 ď . . . and limn sn “ f
almost everywhere then

ż

X

f dµ “ lim
n

ż

X

sn dµ.
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Proof. Because the sequence of integrals
ş

X
sn dµ is non-decre-

asing the limit limn

ş

X
sn dµ, proper or improper, always exists. Thanks

to the definition of the integral we have the inequality
ż

X

f dµ ě lim
n

ż

X

sn dµ.

Consider a simple function g “ ř

nďN an1An where An are pairwise
disjoint sets of finite measure and which satisfies 0 ď g ď f . Then
X0 “

Ť

nďN An has finite measure. Let M “ maxn an (the values
µpX0q and M are fixed). It follows from the Egorov theorem that sn
converges to f almost uniformly on the set X0. For a fixed ε ą 0 there
exists A Ď X0 such that µpAq ă ε{M and the covergence on X0zA is
uniform. This means that for large n we have the inequality

gpxq ´ snpxq ď fpxq ´ snpxq ă ε{µpX0q, for x P X0zA
and hence

ż

X

g dµ “
ż

X0

g dµ “
ż

X0zA

g dµ`
ż

A

g dµ

ď
ż

X0zA

`

sn ` ε{µpX0q
˘

dµ`MµpAq ď
ż

X0

sn dµ` ε` ε,

which proves that limn

ş

X
sn dµ ě

ş

X
g dµ.

Suppose that we can find a simple function g “ a1A such that
0 ď g ď f and µpAq “ 8. Then

ş

f dµ “ 8. On the other hand, we

may consider BN “
ŤN
n“1A XXn, where X “ Ť

Xn and µpXnq ă 8.
Thanks to the result of the previous paragraph, we know that

lim
n

ż

X

sn dµ ě lim
n

ż

BN

sn dµ ě
ż

BN

g dµ “ aµpBNq.

But limNÑ8 µpBNq “ µpAq “ 8, hence limn

ş

X
sn “ 8

This allows us to conclude that

lim
n

ż

X

sn dµ ě sup

"
ż

X

g dµ : g is simple and 0 ď g ď f

*

and limn

ş

X
sn dµ “

ş

f dµ. �

Finally, for a general measurable function we define the integral
with the help of the decomposition we described in Lemma 4.14.

Definition 6.8. We say that a measurable function f : X Ñ R is
integrable if

ş

X
|f | dµ ă 8; in such case, the integral of f is defined by

ż

X

f dµ “
ż

X

f` dµ´
ż

X

f´ dµ,

where f “ f` ´ f´ and f` “ maxpf, 0q, f´ “ ´minpf, 0q.
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Notice that the function f is integrable if and only if the functions
f` and f´ are integrable. Of course, in case that

ş

X
f` dµ “ 8 and

ş

X
f´ dµ ă 8 it is natural to assume that

ş

X
f dµ “ 8 etc. We

may also notice that for an integrable function f and A P Σ we have
ş

A
f dµ “ ş

X
f ¨ 1A dµ.

Now we can easily extend the fundamental properties of the integral
to measurable functions.

Theorem 6.9. For integrable functions f, g and a measurable h we
have the following

(1)
ş

X
pf ` gq dµ “ ş

X
f dµ` ş

X
g dµ;

(2) if f ď g then
ş

X
f dµ ď ş

X
g dµ;

(3) if a ď f ď b then aµpXq ď ş

X
f dµ ď bµpXq;

(4) if h “ 0 almost everywhere then
ş

X
h dµ “ 0;

(5) if
ş

X
h dµ “ 0 and h ě 0 almost everywhere then h “ 0 almost

everywhere;
(6) | ş

X
pf ` gq dµ| ď ş

X
|f | dµ` ş

X
|g| dµ;

(7) for A,B P Σ, if AXB “ H then
ş

AYB
f dµ “ ş

A
f dµ`ş

B
f dµ.

Remark 6.10. Property (3) is still valid even if either or both in-
tegrals only have numerical sense (they may be equal to ˘8).

6.3. Limit theorems. One of the main advantages of the Lebes-
gue integral over the Riemann integral is the availability of limit the-
orems, which allow us to calculate or estimate integrals of possibly
complicated functions with mimimal effort.

Theorem 6.11 (Monotone convergence theorem). If fn is a se-
quence of non-negative functions and f1 ď f2 ď . . . almost everywhere
then the limit function f “ limn fn satisfies

ş

X
f dµ “ limn

ş

X
fn dµ.

The proof is simply an adaptation of the proof of Theorem 6.7.
Notice that we do not assume functions fn to be integrable. The limit
function f is well defined almost everywhere if we allow it to attain
infinite values.

Theorem 6.12 (Fatou Lemma). If fn is a sequence of non-negative
functions then

ż

X

lim inf
n

fn dµ ď lim inf
n

ż

X

fn dµ.

Proof. By denoting

gn “ inf
kěn

fk, f “ lim inf
n

fn,

we obtain gn ď fn, 0 ď g1 ď g2 ď . . . and limn gn “ f . Hence from the
monotone convergence theorem we get

ż

X

fn dµ ě
ż

X

gn dµÑ
ż

X

f dµ,
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and then the result follows immediately. �

Example 6.13. If fn “ 1rn,n`1s, then lim infn fn “ 0, while gdy
ş

R fn dλ “ 1 for every n. This simple example shows that the Fatou
lemma indeed requires an inequality. It is also an easy way to remem-
ber, in which direction is the inequality pointing.

Theorem 6.14 (Lebesgue dominated convergence theorem). Let
fn and g be such measurable functions that for every n the inequality
|fn| ď g is satisfied almost everywhere and

ş

X
g dµ ă 8. If f “ limn fn

almost everywhere then

lim
n

ż

X

|fn ´ f | dµ “ 0 and

ż

X

f dµ “ lim
n

ż

X

fn dµ.

Proof. Let hn “ |fn ´ f | and h “ 2g. Then hn Ñ 0 almost
everywhere and 0 ď hn ď h. Thus by applying the Fatou lemma to the
sequence h´ hn, we obtain

ż

X

h dµ “
ż

X

lim inf
n

ph´ hnq dµ ď lim inf
n

ż

X

ph´ hnq dµ

“
ż

X

h dµ ´ lim sup
n

ż

X

hn dµ.

This gives us lim supn
ş

X
hn dµ “ 0, because

ş

X
h dµ ă 8. Thus we

have shown that
ş

X
|fn ´ f | dµÑ 0. Because

ż

X

fn dµ´
ż

X

f dµ ď
ż

X

|fn ´ f | dµ,
the second relation follws from the first. �

Remark 6.15. Let X “ r0, 1s and fn “ n1r0,1{ns. Then we have
fn Ñ 0 λ-almost everywhere, but

ş

r0,1s
fn dλ “ 1. The assumption

of “dominated convergence”, appearing in (the very name of) Theo-
rem 6.14 is therefore important.

Corollary 6.16. Let µpXq ă 8 and let functions fn be uni-
formly bounded. If f “ limn fn almost everywhere then

ş

X
f dµ “

limn

ş

X
fn dµ.

Theorem 6.17. If f is a measurable and non-negative function on
a measure space pX,Σ, µq then the set function ν : Σ Ñ r0,8s given
for every A P Σ by νpAq “ ş

A
f dµ is a measure on Σ.

Proof. By the properties of the integral, we know that ν is an
additive set function on Σ. If An Ò A for some sets An, A P Σ then
1An is a non-decreasing sequence of functions converging to 1A, while
f1An Ñ f1A. By the monotone convergence theorem we thus have

νpAq “
ż

A

f dµ “
ż

X

f1A dµ “ lim
n

ż

X

f1An dµ “ lim
n
νpAnq
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Hence ν is continuous from below and thus countably additive (it is a
measure). �

7. Lp spaces

Definition 7.1. We say that a sequence of measurable functions
fn : X Ñ R converges in measure to a function f if for every ε ą 0 we
have

lim
nÑ8

µ
`tx : |fnpxq ´ fpxq| ě εu˘ “ 0.

In such case we denote fn
µÝÑ f .

Proposition 7.2. A sequence which converges almost uniformly,
converges in measure.

Proof. If functions fn converge to f almost uniformly, then for
every ε ą 0 there exists a set A such that µpAq ă ε and |fnpxq´fpxq| ă
ε for large enough n and all x R A. Thus tx : |fnpxq ´ fpxq| ě εu Ď A
and µ

`tx : |fnpxq ´ fpxq| ě εu˘ ď µpAq ă ε. �

Remark 7.3. Let fn : r0, 1s Ñ R denote the sequence

1r0,1s, 1r0,1{2s, 1r1{2,1s, 1r0,1{4s, 1r1{4,1{2s, . . .

We can check that fn converges to 0 in Lebesgue measure, but

lim inf
n

fnpxq “ 0, lim sup
n

fnpxq “ 1 for every x P r0, 1s,

so the sequence doesn’t converge almost uniformly.

Lemma 7.4 (Chebyshev inequality). If f is a measurable function
then for every ε ą 0

ε ¨ µ`tx : |fpxq| ě εu˘ ď
ż

X

|f | dµ.

Proof. Let Aε “ tx : |fpxq| ě εu. Then |f |1Aε ě ε1Aε and
ş

X
|f | dµ ě ş

Aε
|f | dµ ě εµpAεq �

Theorem 7.5 (Riesz). Let pX,Σ, µq be a finite measure space and
let fn : X Ñ R be a sequence of measurable functions satisfying the
Cauchy condition in measure, i.e.

lim
n,mÑ8

µ
`tx : |fnpxq ´ fmpxq| ě εu˘ “ 0

for every ε ą 0. Then

‚ there exists a subsequence npkq P N, such that the sequence of
functions fnpkq is convergent almost everywhere;

‚ the sequence fn converges in measure to some function f .



62 3. FOURIER TRANSFORM

Proof. Notice that the Cauchy condition we assumed implies that
for every k there exists npkq, such that for any n,m ě npkq we have

µ
`tx : |fnpxq ´ fmpxq| ě 1{2ku˘ ď 1{2k,

and in addition we can take np1q ă np2q ă . . .. Let

Ek “
 

x : |fnpkqpxq ´ fnpk`1qpxq| ě 1{2k(, Ak “
ď

něk

En.

Then µpAkq ď 1{2k´1 and hence the set A “ Ş

k Ak has measure zero.
If x R A then for every k such that x R Ak and every i ě k we have

|fnpiq ´ fnpi`1q| ď 1{2i.
It follows from the triangle inequality that for j ą i ě k we have

|fnpiq ´ fnpjq| ď 1{2i´1.
This means that for x R A the numerical sequence fnpiqpxq satisfies the
Cauchy condition and hence converges to a number, which we (unsur-
prisingly) denote as fpxq. In this way we obtain that fnpkq converges
almost everywhere to the fuction f and this proves the first part of the
theorem.

In order to verify the second part it suffices to notice that fn
µÝÑ f ,

which follows from
 

x : |fnpxq ´ fpxq| ě ε
(

Ď  

x : |fnpxq ´ fnpkqpxq| ě ε

2

(Y  

x : |fnpkqpxq ´ fpxq| ě ε

2

(

,

and the Cauchy condition for the convergence in measure. �

a

b

Figure 2. Young inequality: the rectangle r0, asˆ r0, bs
is covered by the blue and red areas, but there is an
excess of blue, hence the inequality.

Lemma 7.6 (Young inequality for products). For any positive num-
bers a, b, p, q, if 1{p` 1{q “ 1 then

ab ď ap

p
` bq

q
.
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Proof. Consider the function fptq “ tp´1 on the interval r0, as. We
assume p ą 1 therefore f has the inverse function gpsq “ s1{pp´1q. Note
that the areas under the graphs of f : r0, as Ñ R and g : r0, bs Ñ R
cover the rectangle r0, as ˆ r0, bs (see Figure 2).

Thus

ab ď
ż a

0

tp´1 dt`
ż b

0

s1{pp´1q ds “ tp

p

ˇ

ˇ

ˇ

ˇ

a

0

` sq

q

ˇ

ˇ

ˇ

ˇ

b

0

“ ap

p
` bq

q
,

because 1` 1{pp´ 1q “ p{pp´ 1q “ q. �

Definition 7.7. For every measurable function (integrable or not)
f : X Ñ R and p ě 1 the expression

}f}p “
ˆ
ż

X

|f |p dµ
˙1{p

is called the p-th integral norm of the function f .

Theorem 7.8 (Hölder inequality). For every pair of functions f, g
and numbers p, q ą 0 such that 1{p ` 1{q “ 1 we have the following
inequality

}fg}1 “
ż

X

|f ¨ g| dµ ď }f}p ¨ }g}q.

Proof. The inequality is obviously true if one of the norms on the
right-hand side is infinite. Otherwise, for a given x P X we substitute

a “ |fpxq|}f}p , b “ |gpxq|}g}q
into the inequality in the previous lemma in order to obtain (for every
x P X)

|fpxq ¨ gpxq|
}f}p ¨ }g}q ď 1

p
¨ |fpxq|

p

}f}pp ` 1

q
¨ |gpxq|

q

}g}qq .

By integrating the last inequality we get
ż

X

|fg| dµ}f}p ¨ }g}q ď 1p` 1q “ 1. �

Theorem 7.9 (Minkowski inequality). For every pair of functions
f, g and a number p ě 1, we have the following inequality

}f ` g}p ď }f}p ` }g}p.
Proof. The inequality is satisfied for p “ 1. For p ą 1 we may

find a number q satisfying the condition 1{p ` 1{q “ 1. Notice that
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pp´ 1qq “ p and p{q “ p´ 1. We use the Hölder inequality to get

}f ` g}pp “
ż

X

|f ` g|p dµ

ď
ż

X

|f | ¨ |f ` g|p´1 dµ`
ż

X

|g| ¨ |f ` g|p´1 dµ

ď }f}p
ˆ
ż

X

|f ` g|pp´1qq dµ
˙

1
q

` }g}p
ˆ
ż

X

|f ` g|pp´1qq dµ
˙

1
q

“ `}f}p`}g}p
˘¨
ˆ
ż

X

|f`g|p dµ
˙

1
q

“ `}f}p`}g}p
˘¨}f`g}p{qp .

We now divide both sides by }f ` g}p{qp and we get result.
Note that in order for this proof to be entirely correct, we need to

verify that }f}p, }g}p ă 8 implies }f ` g}p ă 8. �

7.1. Banach spaces. Recall that a norm on a linear space X is a
function } ¨ } : X Ñ C (or X Ñ R) such that

(1) }x} ě 0 for every x P Rd and }x} “ 0 if and only if x “ 0;
(2) (triangle inequality) }x` y} ď }x} ` }y} for every x, y P X;
(3) (homogeneity) }ax} “ |a|}x} for every x P X and every a P C

(or a P R).

Definition 7.10. A normed space pX, }¨}q is called a Banach space
if the metric induced by the norm is complete, i.e. for every sequence
xn P X satisfying the Cauchy condition

lim
n,kÑ8

}xn ´ xk} “ 0,

there exists x P X such that }xn´x} Ñ 0 (x is the limit of the sequece).

The p-th norm function } ¨ }p is in fact a norm: Minkowski inequa-
lity is the triangle inequality for } ¨ }p and homogeneity follows directly
from the properties of the integral.

The only problem is with the first axiom, since }f}p “ 0 is only
equivalent to saying that f “ 0 almost everywhere.

Definition 7.11. For a given measure space pX,Σ, µq, by Lppµq
we denote the space of all measurable functions f : X Ñ R for which
}f}p ă 8. Elements of Lppµq which are equal almost everywhere are
identified as classes of abstraction.

In this way Lppµq equipped with the p-th integral norm becomes a
normed space, but formally speaking it consists not of functions, but
classes of abstaction (of functions). Most often. however, we may still
refer to the elements of Lppµq as functions without any confusion.

It is nonetheless important not to forget about this distinction. For
example, if f is a measurable function and rf s is its class of abstraction
such that f „ rf s P Lppλq, then for a chosen point x P R the value
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fpxq is “undefined”, since a single point has Lebesgue measure zero.
In fact, rf s contains functions attaining all possible values at x.

Notice that if fn Ñ f almost everywhere, then the same is true
for every representative of the respective classes of abstraction, while
it is not true for the actual pointwise convergence (everywhere without
“almost”).

In different contexts, Lppµq may also be denoted by LppX,Σ, µq or
as LppXq. For example, we usually write LppRq or LppTq to refer to
spaces defined using the Lebesgue measure on R or T.

Theorem 7.12. Spaces Lppµq with norms } ¨ }p are Banach spaces
for p ě 1.

Proof. Consider p “ 1 and let fn P L1pµq be a Cauchy sequence
in the norm } ¨ }1, that is

lim
n,kÑ8

ż

X

|fn ´ fk| dµ “ 0.

Then for ε ą 0 it follows from the Chebyshev inequality that
ż

X

|fn ´ fk| dµ ě ε ¨ µ
´

 

x : |fnpxq ´ fkpxq| ě ε
(

¯

,

which means that fn is a Cauchy sequence in measure.
It follows from the Riesz theorem that there exists an increasing

sequence nk P N and a function f such that fnk Ñ f almost everywhere.
On the other hand, the Fatou lemma gives us

ż

X

|f | dµ ď lim inf
k

ż

X

|fnk | dµ ă 8,
because the Cauchy condition implies that the sequence of integrals
ş

X
|fn| dµ is bounded.
Using the Fatou lemma once again we obtain

ż

X

|f ´ fnk | dµ “
ż

X

lim inf
j

|fnj ´ fnk | dµ

ď lim inf
j

ż

X

|fnj ´ fnk | dµ ď ε,

for k large enough. Finally, because
ż

X

|f ´ fn| dµ ď
ż

X

|f ´ fnk | dµ`
ż

X

|fnk ´ fn| dµ,
we obtain that f is in fact the limit of the sequence fn in the space
L1pµq. The proof for p ą 1 is a rather mechanical modification of this
argument. �

Remark 7.13. Consider measure spaces pX,Σ, µq and pY,Θ, νq.
We may then define

ΣbΘ “ σ
`tAˆB : A P Σ, B P Θu˘,
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which is a σ-field of subsets of X ˆ Y . Similarly, we may define

pµb νqpAˆBq “ µpAq ¨ νpBq,
and show that µ b ν extends to a measure on pX ˆ Y,Σ b Θq. It can
also be shown that

BorpRˆ Rq “ BorpRq b BorpRq.
This allows us to easily consider spaces of functions of complex

values. For a measure space pX,Σ, µq and a function f : X Ñ C we
say that f is measurable if f´1rBs P Σ for every Borel set B Ď C. Here
C may be identified with Rˆ R and so BorpCq “ BorpRq b BorpRq.

We may express such a function as f “ Re f ` i Im f , where Re f
and Im f are real-valued functions. Then f is measurable if and only
if Re f and Im f are measurable.

Hence if f is measurable then its modulus |f | “apRe fq2 ` pIm fq2
is measurable as well. The function f is integrable when

ş

X
|f | dµ ă 8,

while
ż

X

f dµ “
ż

X

Re f dµ` i
ż

X

Im f dµ

defines the integral. The basic properties of the integral remain valid.


