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CHAPTER 1

Introduction

1. Heat equation.

Consider a metal rod of length [ with a given initial distribution of
temperature. We want to describe how the heat dissipates over time.
Temperature of the rod at point = satisfies

(1) 2(t )—6—2(15) t>0, O0<z<l
= ult,x) = 55u(t, 2), : xr<l.

Suppose the initial distribution of heat at time ¢t = 0 is given by
(2) u(0,z) = f(z), 0<az<lI

and the ends of the rod have the same temperature

(3) u(t,0) = u(t,l) =0, ¢t=0

(for simplicity we set the temperature to 0, which could mean that
both ends of the rod are immersed in thawing snow). Notice that in
order for conditions (2) and (3) to be consistent we need to assume

f(0) = f(l) = 0.
We may solve this problem using a method developed by Joseph
Fourier in 1822'. Suppose the solution has the form

u(t,z) =T(t)  X(x).
Then, by using equation (1), we obtain

(
T'(t) - X(z) = T(t) - X" ()
and
() _ X"(x)
()  X(x)
Notice that the function on left-hand side of the last equation depends

only on the variable ¢, while the function on the right-hand side only
depends on x. Hence, both functions must be constant, i.e.

T'(t) _ X" (x)

T - X(z)
It follows that

X"(z) = AX(x) =0.

=\

1y, FOURIER, Théorie analytique de la Chaleur, Didot, Paris, 1822
4



1. HEAT EQUATION. 5

This is a second-order ordinary differential equation, which we may
solve

ae¥™ 4 pe~ VI when A > 0,
X(z) =1 acos (\/—)\x) + bsin (\/—)\I) when A < 0,
a+ bx when \ = 0.

The function u(t, z) satisfies the boundary condition (3), therefore
X(0)=X()=0.
It follows that

2 :keN

21.2
a=b=0, when/\>00r)\:Oor/\¢{—7rk };

and
m2k?

l2

a=0, b free, when)\e{— :keN}.

Let ke Nand A\ = —%. We have
k
(4)  X(z) = bysin (”Tx)
where b, may be any real number, as well as
T2 k>
12
The last equation is solved by

(5) T(t) = exp ( - W?f t).

If we combine (4) and (5), we get

T'(t) = AT(t) = —

T(1).

21.2

u(t, ) = by exp < - Wlf t) sin (?x)

Because equation (1) is linear and wy satisfy condition (3) for every
k € N, the following sum

un(t, ) = ébk exp ( - ijzt) sin (?m)

is also a solution for every N € N. Notice that this sum is no longer
of the form uy(t,z) = T(t) X (z).
We still need to consider the initial condition (2). We have

ur (0, x) = by sin (WTk:c)

and

(6) un(0,x) = i by sin (WTkx>
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Thus, if the function f may be represented in the form (6), uy is a
solution we are looking for (here we disregard the question whether it
is the only solution). However, it is clear that even though we may
select the coefficients by, freely, this is a very limited class of functions.

Instead of considering the finite sum (6), it is therefore tangible to
ask the following question: Given a function f in a certain class, can
it be represented as a series, or infinite sum,

f(z) = i by sin <7r7km>7
k=0

2. Trignonometry and complex functions.

Before proceeding further, we need to recall some basic facts in
trignonometry and complex analysis.

In the simplest way, sine and cosine are defined by relations between
sides in a triangle (Figure 1).

. tan o
sin o

COos

FIiGURE 1. Values of sina, cosa and tana given as
lengths of coloured segments in a circle of radius 1.

We also have

d . d :
—— ST = COST, — COSX = —S8SInx.

dx dx

We may then discover the analytical expressions in the form of power
series

x2n+1

e} o0
—1)"(2n + 1)! —1)"(2n)!
sinxzz( )"(2n ), cosxzz(i‘#,

and use those to define and extend the functions onto the real line,
making them 27-periodic. (Figure 2).
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FIGURE 2. Functions sin(z) and cos(x) on the real line,
x given in radians.

We use sine and cosine to define the other trigonometric functions

sin & CoS T
tanx = , cotr = ——,
CoS T sin x
1 1
secxr = , CSCx = — )
Ccos T sinx

which we call tangent, cotangent, secant and cosecant, respectively.
Let z € C. The exponential function is defined by a series

O _n
R z
e =exp(z) = Z —
n!
n=0
For z,w € C we have
eerw — ezew7 ez — 6_

In particular, e*™ = e®e”. If we consider z = iz, we have

n=0
o¢] n o n
_1) $2n (_1) x2n+1
= Z —— t+i Z ~————— = cos(z) +isin(z).
s (2n)! o (2n + 1)!
This allows us to write the Euler formulas
eiw 4 efix 62’3: _ efz'm

sinz = Ime”* =

cosz = Ree™™ = _—
2 ’ 2



CHAPTER 2

Fourier series

1. Periodic functions.

DEerFINITION 1.1. Let f : R - Ror f: R — C. We say that the
function f is p-periodic, p > 0 if f(xz + p) = f(x) for every = € R.

It is easy to see that if f is p-periodic, then it is kp-periodic as well
for every k € N.

DEFINITION 1.2. The basic period of a function f is the smallest
positive number p > 0 such that f is p-periodic, provided such p exists.

ExAMPLE 1.3. The following function
1 when x € Q,

flz) =

0 when z ¢ Q

does not have a basic period.

In the following we are going to assume that the functions are 2m-
periodic. We do not lose any generality, since if a function g is p-
periodic, p > 0, then f(x) = g(5%) is 27-periodic and vice-versa.

Notice that 2m-periodic functions may be equivalently treated as
functions on a torus (unit circle) T = S'. Trigonometric functions are
basic examples of 27-periodic functions.

DEFINITION 1.4. The following infinite set of functions
{sinnx, cos nz},en, = {1,sinz, cos z, sin 2z, cos 2z, . . .}
is called the trigonometric system.

LEMMA 1.5. The trigonometric system is an orthogonal system, i.e.
if fj, fx € {sinnx, cosnz}pen,, then

2m
J fi(@) fi(x) = cixdin,
0
where cj, > 0 are positive numbers.

LEMMA 1.6. The set {(27?)*1/262"”“"”}716Z is an orthonormal system,
i.€.
27 1 )
—e"(x)——¢
0o V2T V2T

COROLLARY 1.7. Both systems are linearly independent.

8



3. STONE-WEIERSTRASS THEOREM. 9

2. Trigonometric polynomials.

In many applications (recall the example of the heat equation), we
are interested in considering only real-valued functions. However, it is
often more convenient to study general complex-valued functions.

DEFINITION 2.1. A 27-periodic function W : R — C which may be
expressed in the form

N
(7) W(z) = ao + Z (ak cos(kz) + by sin(kz))

k=1
for (finite sets of) complex coefficients {ay}, {bx}, is called a trigono-
metric polynomial.

Notice that the function given by expression (6) is an example of
a trigonometric polynomial. A more concise formula to define trigono-
metric polynomials is the following

N
(8) W(zx) = Z cpe*®, {cp} < C.
k=—N

Lemmas 1.5, 1.6 provide us with a method of calculating the coef-
ficients of a trigonometric polynomial. Namely, given a trigonometric
polynomial W (x), we have

W(zx) = 2 cne™,

nez
where
1 27 ]
Cp = — W(z)e " dx.
2 Jo

Notice that only a finite number of coefficients ¢,, are non-zero.

3. Stone-Welierstrass theorem.

Let K be a compact space, e.g a bounded subset of R or C?. By
C(K) and Cr(K) we denote the spaces of complex-valued and real-
valued continuous functions on K. We consider the following metric
(norm)

do(f,9) = |f = gl = sup |f(x) = g(a)],
xre
which describes the topology of uniform convergence of functions in
C(K) and Cgr(K).

DEFINITION 3.1. We say that a set A < Cr(K) (or A < C(K)) is
an algebra if f,g € A implies fge A, f + g€ A and ¢f € A for every
ce R (or every c e C).

REMARK 3.2. Notice that ||fg|e < | flleollgleo, i€ the |- |o norm
15 submultiplicative.
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ExAMPLES 3.3. The following sets are algebras
(1) Polynomials P in Cg[0, 1] (or any Cg|a, b]).
(2) A= {feCr([0,1]): f(3) = 0}
LEMMA 3.4. If A c Cr(K) is an algebra then cl A (uniform limits

of functions from A) is also an algebra.

ProoF. If f,g € cl A then we may find sequences f,, g, € A such
that ||f, — fllo — 0 and g, — 9] — 0. We have

angn - fg”OO = H(fn - f)(gn - g) + f(gn - g) + g(fn - f)Hoo
< o= Flolgn = glloo + [ flloolgn = glloo + [ gleo ] fr = flleo-

Thus | fngn — f9]e — 0, which means that fg € cl A. In a similar way
we show that f + g e cl A and cf € cl A for every c € R. O

DEFINITION 3.5. We say that an algebra A c Cg(K) (or C(K))
separates points if for every pair of points x1, 29 € K there exists a
function f € A such that f(z1) # f(z2).

DEFINITION 3.6. We say that an algebra A < Cg(K) (or C(K))
does not vanish in K if for every point x € K there exists a function
f € A such that f(z) # 0.

EXAMPLE 3.7. Algebra of polynomials P  C[a, b] does not vanish,
because x — 1 € P. Algebra P separates points, because the function
x — x is injective (one-to-one).

LEmMMA 38. If A ¢ Cr(K) is an algebra which separates points
and does not vanish in K, then for every pair of points x1,x9 € K
and numbers a;,as € R, we may find a function f € A satisfying

f(x1) = ay, f(22) = as.
PROOF. There exist functions hy, hs, g € A such that
hi(x1) # 0, ha(2) # 0, g(x1) # g(x2).
Let us define functions
u(z) = g(x)hi(x) — g(x2)ha(2),
v(x) = g()ha(x) — g(21)ha(z).
Then u,v € A and
u(zy) # 0, u(zy) =0, v(xy) =0, v(xg) # 0.

~—

Let us notice that the function

)
o) = aey )

satisfies the lemma. O
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THEOREM 3.9 (Stone-Weierstrass). Let A < Cr(K) be an algebra
which separates points and does not vanish in K. Then A is dense in

Cr(K).
REMARK 3.10. The following statements are equivalent
(1) A is dense in Cr(K);
(2) cl A = Cr(K).
(3) for every continuous function f € Cr(K) there exists a se-
quence f, € A such that f, 3™ f (uniformly) in K;

Theorem 3.9 is a consequence of the following three lemmas. From
now on we always assume that A c Cg(K) is an algebra which sepa-
rates points and does not vanish in K.

LEMMA 3.11. If f € cl A then |f| € cl A.

PrROOF. We may assume that f # 0. Consider

17

2] flle

Then ||g| = 3. Therefore [g(z)| < 3 < 1 for every x € K and we know
that g € cl A. Tt is enough to show that |g| € cl.A. Tt follows from the

Weierstrass theorem!® that there exists a sequence of polynomials p,, ()
such that

9

pa(y) 3™ Jyl, —l<y<l
Then
sup [pn(9(x)) —1g()|] < sup [pu(y) —[yl| = 0,
K lyl<1
thus

pa(g(®) =" |g(x)], 2zeK.

Because every polynomial p,(y) = ij:o cpy™ is constructed by only
using operations “allowed” in an algebra, we know from Lemma 3.4
that p,(g(x)) € cl A. Therefore |g(x)| € cl A. O

LEMMA 3.12. If f,g € cl A then min{f, g}, max{f, g} € cl A.

PRrooOF. It follows from Lemma 3.11 and the subsequent relations
frg9—1f—y| frg+1f—4

2 2 ‘
REMARK 3.13. As an immediate consequence we obtain that if

fi, fay ooy fu € cl A, then min{fi, fo,..., fn} and max{fi, fo,..., fu}
belong to cl A.

0

min{f, g} =

I The sequence of polynomials which approximates y —> |y| may be constructed
explicitly. Thus we do not have to rely on the Weierstrass theorem and its original
formulation is indeed a special case of the Stone-Weierstrass theorem;
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LEMMA 3.14. Let f € Cr(K) and x € K. For an arbitrary € > 0
there exists a function g, € cl A such that
9=(x) = f(z)
gz(t) > f(t) —e, whente K.

PRrooF. It follows from Lemma 3.8 that for every y € K there exists
a function h,, € cl A such that

hy(z) = f(2), hy(y) = f(y)-
Because h,, is continuous, there exists a neighbourhood U, of the point
y such that h,(t) > f(t) —¢, for every t € U,. The neighbourhoods U,,
y € K cover the set K. By the property of compactness of K, we may
thus choose a finite subcover

K=U,vuvU,u...uU,.
Let us define the following function
galt) = max {yy (6), gy (1) -, Py (1)},
We use the remark following Lemma (3.12) to show that g, € cl.A. We

also know that g,(x) = f(x). Finally, for every t € K, we have t € U,
for at least one index j = 1,2,...,n and so

gu(t) = hy, (t) > f(t) —e. O

LEMMA 3.15. Let f € Cr(K) and ¢ > 0. Then there ezists a
function h € cl A such that

|h(z) — f(z)| <e  for everyz e K.

PrROOF. It follows from Lemma 3.14 that for every point z € K
there exists a function g, € A such that

gz(x) = f(z) and g,(t) > f(t) —¢ foreveryte K.

Because g, is continuous, there exists a neighbourhood V). of the point
x such that

gz(t) < f(t) +¢ for every t € V.

The neighbourhoods V,, cover the set K. We select a finite subcover
K=V,uV,u...0uV,,

and define
h(t) = min {ge, (t), gus (1), - -+ g (1) }-

It follows from Lemma 3.12 that h € cl.A. Because g,,(t) > f(t) —¢

for every j =1,2,...,n, we also have h(t) > f(t) — . For every t € K
we have t € V,; for some index j =1,2,...,n and so

h(t) < g.;(t) < f(t) +e.
As a result
|h(t) — f(t)| <e, foreveryte K. O
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We now discuss the complex case.

DEFINITION 3.16. An algebra A c C(K) is called self-adjoint if
f e Aimplies f € A.

THEOREM 3.17 (Stone-Weierstrass, complex variant). If A is a self-

adjoint algebra in C(K) which separates points and does not vanish,
then A is dense in C(K).

PROOF. Let Ay = {f € A: f = f} < Cr(K) and notice that Ag
is an algebra in Cg(K). Let us verify that Ag satisfies the hypothesis
of Theorem 3.9. We know that for x; # x5 € K there exists a function
f € Asuch that f(z1) # f(x2). Therefore

Re f(x1) # Re f(x2) or Im f(x1) # Im f(z2).
But Re f,Im f € Ag, because algebra A is self-adjoint and
[+ f-7
2 2i
Hence Ag separates points. For every x € K there exists f € A such
that f(x) # 0. Therefore
Re f(x) #0 or Im f(z) #0.

Hence Ag does not vanish. By Theorem 3.9 the algebra Ag is dense in
Cr(K).

Let f € C(K). Then f = Re f+iIm f and both functions Re f and
Im f may be uniformly approximated by functions in Ag. Therefore f
may be approximated by functions in A. O

Re f = Im f =

4. Fourier series.

In the same way as in the case of trigonometric series, with an
integrable, 27m-periodic function f we may associate a function series,
which we denote

(9) f N Z Cneinsc7

nez
where
1 27 )
(10) Cn =5 ) f(z)e " dx.

The numbers ¢,, are called the Fourier coefficients and denoted

cn = f(n).
By convergence of a (Fourier) series (9) we mean the convergence of
the sequence of its partial sums

Sxf(x) =) fln)e™.

In|<N
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We already know that in the case when f is a trigonometric polynomi-
als, we have

x) = Z cn€™ = lim Sy f(x) fo every z € R%.
neZ N

Our aim now is twofold. First, we want to find as many as pos-
sible functions for which the series (9) converges, and converges to
the function f. Second, when the series diverges, we want to de-
scribe other modes of convergence such that we can still say that
F@) = S cac™.

Notice that the Stone-Weierstrass theorem is not sufficient for con-
vergence, even when the function is continuous: we may find trigono-
metric polynomials arbitrarily close (in the uniform sense) to any f,
but they need not match the partial sums of the series (9) (think of the
relation between the Taylor expansion and analytical functions on one
hand, and the Weierstrass theorem about polynomials on the other).
In fact, it turns out that there are continuous functions with divergent
Fourier series.

5. Dirichlet kernel.

Let us denote the n-th partial sum of the Fourier series of a function
f:T—->ChbhyS,.f

= Z J’c\(k)ezkac _ Z —ikteikz dt

|k|<n |k|<n
1 .
- f( ) Z ezk(mft) dt.
27T |k|<n
If we define
(11)  Dy(z) = ), e*
|k|<n

then we obtain

J F() Doz — 1) dt.

DEFINITION 5.1. For functions u, v on T the following operation
(in the alebraic sense)

(w5 v)(x) = J w(tyo(e — ) dt
is called the convolution (we omit the question of when it is well-
defined, and how can the underlying group be described).

Hence

Suf(2) = 51 * Dul).
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Let us calculate the (finite) sum (11) which defines D, (¢)

n 2n

Dn(t) _ Z ekt _ o—int Z ikt
(12) k=—n k=0
it 6i(2n+l)t -1 6i(n+1)t _ it
— ¢ et —1 et — 1
By multiplying the numerator and the denominator by e~*/? and using

the Euler formulas, we obtain
sin ((n + 1)t)
sin % '
Notice that D,, is an even function. By using the de I’'Hopital rule we
get

Dy (t) =

sin ((n + 1)t)
t

2
thus D,, may be extended at 0 to a continuous function by putting
D, (0) = 2n + 1. Moreover,

™

D, (t)dt = 2.

i (2n + 1) cos ((n + 1)t)

lim :
t—0 CcOS 5

- =2n+1,
t—0 Sin

By using the Euler formulas again directly in formula (11), we obtain
yet another representation

(13) D, (z) = Z ekr = 0 4 Z (e + e ™) =1+2 Z cos(kx),
Ik|<n k=1 k=1
DEFINITION 5.2. The (continuous) function
sin ((n + 3)t)
D,(t) = sin%
2n + 1 when t = 0,

is called the Dirichlet kernel.

when ¢ € [—m, 7]\{0}

— Ds(t)
— D10 (t)
o W% -

FIGURE 1. The Dirichlet kernel.
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6. Hilbert spaces

Let H be a linear space over the field C (or R). Recall that a
function (-, ) : H x H — C (or R) which is

e (conjugate) symmetric
(x.y) = {y,x);
e linear (sesquilinear)
lax + by, z) = alx, 2) + Iy, 2);
e and positive-definite
{x,x) >0, xeH\{0}.
is called an inner product on H.

DEFINITION 6.1. Let H be a linear space over the field C, equipped
with an inner product {-,-) (we say that (%, (-,-)) is an inner
product space).

An inner product defines the norm (and hence the metric) on H

|z = /<@y, d(z,y) =z =yl

We have the following properties

e polarization formula
13
Cwyy =7 2, o+ iyl
k=0

e parallelogram identity
lz +yl* + |z = ylI* = 2]=[* + |y ]

e law of cosines
lo +yl* = 2|* + |y[* + 2Re{z, y);

e Cauchy-Schwarz-Bunyakovsky inequality
Kz, )l < lz|]yll-

DEFINITION 6.2. We say that the vectors e; € H form an or-
thonormal system if
ejreny =i llegl* = Cejrey = 1,
where
0, when j # k,
Ok = {1, when j = k.
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ExXAMPLE 6.3. Consider the space H = C(T) and let

{f.9)= fo ' f(x)g(z)dx.

Then (-, -) is an inner product on H. Let
1
\2m

then {e,} is an orthonormal system in (H,{-,-)).

inT
e

€p =

DEFINITION 6.4. An inner product space which is complete is called
a Hilbert space. A linearly dense orthonormal system is called a Hil-
bert basis, or simply a basis (not to be confused with a linear basis!).

DEFINITION 6.5. We denote by L?*(T) the completion of C(T) with
respect to the inner product

21

f(x)g(x) d.

0

(recall that a continuous function on a closed interval is integrable in
both Riemann and Lebesgue sense).

6.1. Bessel inequality.

THEOREM 6.6. Let {e,} be an orthonormal system in an inner prod-
uct space (H, (- >) For a fized x let

n
sn = ) {x, ey en
k=1

and for an arbitrary sequence {ay} let

n
tn = Z Q€.
k=1

Then
lo = snl® < o — ta]*.
Moreover, the equality holds only when ay = (x, e).

PROOF. Let ¢, = {(x,e,,). We have

<x>tn> = Zn: Cm@
m=1

and

n
[tn]® = Z [ |*.
m=1
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By orthonormality we get

l& = tal® = 2] + [ta]® — 2Re<z, tn)

= |z*+ )] (lam[* — 2Re cpntin)

m=1
n n
= 2 = Y feml + D fam — el
m=1 m=1

The last expression attains its minimum when a,, = ¢,,. By substitut-
ing a,, = ¢,,, we obtain the result. U

COROLLARY 6.7 (Bessel inequality). If {e,} is an orthonormal sys-
tem in (H,{-,-)), then for every x € H we have

n
2

2 [Kwrew]” < el

k=1
Proor. Using notation from the previous theorem, we have

n
[ = D leml® = |z = sa]* = 0. 0
m=1

COROLLARY 6.8 (Parseval identity). If an orthonormal system e;

is linearly dense, i.e. the linear combinations of e; constitute a dense
set in H, then

2 = 3" [z, e
k=1

PROOF. Let ¢ > 0 and {a;} be such that |z — 3 | azer| < .
Denote ¢, = {x, ). Then

N N
x—chek <’$—Zakek < €.
k=1 k=1
Hence
N N
0< I—chek‘=m2—2|ck|2<e. O
k=1 k=1

THEOREM 6.9 (Parseval identity for Fourier series.). If f € L*(T)
then we have

f(x) =Sy f(x)| dz =0,

lim
N—owo |

| Ir@pds = 2 35 Fon,

where ]?(n) are given by (10) and Sy f = %DN x [ is the N-th partial
sum of the Fourier series of function f.

T ’ 2

™
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COROLLARY 6.10 (Riemann-Lebesgue Lemma). If f is an inte-
grable function on T then lim, o f(n) = 0.

PROOF.
For those who do not know the Lebesgue integral. Let f e C(T) (or
in fact, f € L*(T)). Then

T

SUFmP =5 [ 1oz

—Tr

This proves the lemma, because the series is convergent.
For those who do know the Lebesque integral. Let f € L'(T). Take
e > 0 and let g € C(T) be such that

ff |f —gldx <e.
Then

|g(n)| < for |n| > N..
Moreover,

Fo = 5(0] = o-| [ (#(@) - g(@)e ™ do

™ .
o _W’f—g\dx < o€,

which proves the lemma. O

7. Pointwise divergence of Fourier series

In Theorem 6.9 we showed convergence of the series of partial sums
of a Fourier series Sy f in the norm of the space L?(T), but we don’t
know whether the series converges pointwise. It turns out that for a
typical continuous function, it is not the case.

DEFINITION 7.1. A subset S of a metric space X is nowhere dense

if the closure cl S has an empty interior. In other words, for every open
ball B in X we have B\clS # (.

EXAMPLES 7.2. A finite subset of the real line is nowhere dense.
A countable set Z < R is nowhere dense. But a countable union of
nowhere dense sets may not be nowhere dense, e.g. Q < R is dense.

The Cantor set C' < [0, 1] is nowhere dense even though it is uncount-
able.

DEFINITION 7.3. A set S is a first category set (or meagre) if S
is a countable sum of nowhere dense sets in X.

EXAMPLE 7.4. Q is a first category set, which is itself not nowhere
dense.
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REMARK 7.5. A countable sum of first category sets is a first cate-
gory set.

Recall that a bounded linear operator 7' : X — Y between normed
spaces X and Y is continuous

Tz, —Tx| = |T(z,, — x)| < C|xy, — 2| -0, ifz, -z
We define the operator norm as

Tl’|y
)= sup 1Tt
zeX,x#0 HxHX

THEOREM 7.6 (Banach-Steinhaus). Let X andY be normed spaces.

If F is a family of bounded linear operators from X to'Y then either
the set of numbers {|T|| : T € F} is bounded or

{r e X :sup|Tz| < o}
TeF

s a first category set in X.

REMARK 7.7. If the set {||T| : T € F} is bounded, i.e. there exists
a number ¢ > 0 such that |T| < ¢ for all T € F, then

|Tz| < [T]llz] < ¢|z], zeX, TeF.
Hence {x € X : supper |[Tz| < 0} = X.
PROOF. Assume that

A={xe X :sup|Tz| < oo}
TeF

is not a first category set. Let

A, ={re X :sup|Tz| < n}.
TeF

Then

A= D A,.
n=1

The sets A,, are closed, because if x € A,, and x, — x, then
|T] = lim [Tz ]| < n.
Therefore for some n the set A,, contains a ball
A, D B.(xg) ={re X : |z — x| <r}.
Let ||y| < r. Then y + zg € B.(z9) < A,. Therefore
I Tyl = T (y +x0) = Toll < [T(y+xo)| + |Tx0]| < ntn = 2n.

For every  # 0 the element y = rZ satisfies |ly| = r, thus

| Ty| 2n
|T] = 2] < — I,
r T
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which means that

2
T <=2, TeF 0
T

COROLLARY 7.8 (duBois Reymond). There ezists a continuous
function f € C(T) such that S, f diverges at a point.

ProoF. Notice that f — T, f = 275, f(0) = D, = f(0) is a family
of bounded linear operators, T, : C(T) — C. We are going to show
that the set {|7,] : n € N} is unbounded.

Let ¢, be a sequence of continuous functions such that |¢,| < 1,
each of which is equal to sgn D,, except for small neighbourhoods of its
zeroes. Suppose those neighbourhoods are of the length (2n)~2 and we

know that D,, has exactly 2n zeroes Denote the sum of those intervals
by I,. Then we have |I,| = 5- and

an bu() D

J|DM@Mx+ o <2lL|(2n+1) < 3.
I

Therefore

J'¢n (z) dz

|D,,(x)| dx — ) ¢n(2)Dp(x) do

I3

=L|Dn(az)|dx— ) | Dy ()] dx —

) On () Dp(x) da

1 &1
P

This means that the set of norms ||7,,|| is unbounded. By the Banach-
Steinhaus theorem there exists a function f such that S, f(0) is not
convergent. In fact, the set of such functions is residual (a complement
of a first category set), i.e. we are extremly lucky if we find a function
for which the series converges at every point. O

LEMMA 7.9. We have

& 1 &4 1
D, = — —
f| B

—T
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PROOF. Notice that sinz < z for z > 0. We have

fﬂ |D,(z)| do = QJﬂde_

3 x
0 sin 3

u : 1 ﬂ—(n_;,_l) .
24 de[ ) |sina]

0 2

—T

n Tk : n 1
1
2 [ s Y [ il

k=1 Jm(k—1) T k=1 Tk Jo

™ 1 n 1
Hence §7 [D,(2)|de > 137, L. O
8. Pointwise convergence of Fourier series

Notice that the definition of the coefficients of the Fourier series is
non-local, i.e. by changing a function at any point, the exact values of
its Fourier coefficients may change far away from this point.

Nevertheless, we have the following result, which says that a small
modification is not going to affect convergence of the series at a dis-
tance.

THEOREM 8.1 (Riemann Localization Principle). If f € C(T) is
zero in a neighbourhood of x, then lim, . S, f(x) = 0.

Because of linearity, this formulation it is equivalent to saying that
if two functions agree in a neighbourhood of x, then their Fourier series
behave in the same way at z.

PROOF. Suppose that f(t) =0 on (z —d,x + 0). Then
sin((n + 3)t)

Suf (&) = L@l@ e
Let
g(t) = gi(ji—n_(ghéﬂsw(t).

Then g(t) € L*(T) and because of the Euler formulas we have
sin((n + 3)t)

sin(%)

[z — 1) Ls<py<a(t)
i(n+3)t _ 671(n+§)t

21

— 2ig(t)sin ((n + 1)t) = 2ig(t)=
_ g(t)eit/Qeint o g(t)efit/Zefint_
Thus for g1 (t) = g(t)e? and gy(t) = g(t)e~*/? we obtain

S, f(x) JW <g(t>eit/2€mt B g<t>67it/2efmt) dt

—T

= g1(n) + ga(—n)
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By the Riemann-Lebesgue lemma we have ¢;(n) — 0 and g3(—n) — 0
and we conclude that

lim S, f(z) = 0. O

DEFINITION 8.2. We say that f is a functon of bounded variation
on an interval [a,b] if it is the difference of two bounded monotone
functions?.

We also introduce the following notation for right and left limits of
a function at a point

fla®) = lim f(y) f7) = lim f(y).

The distinction is of course only important if the function is not con-
tinuous at x.

LEMMA 8.3 (Second mean value theorem for integrals). If h is pos-
itive monotonically increasing function on [a,b] and ¢ is integrable on
[a,b], then there exists c € [a,b) such that

[ n@rote)ae = 007 [ o0

PROOF. It is left as an exercise. O

THEOREM 8.4 (Jordan Criterion). If f is a function of bounded
variation in a neighbourhood of x, then
1
lim S, f(x) =
n—aoo

E(f(ﬁ) + f(z7))

PrROOF. We may assume that f is monotone in a neighbourhood
of z. Since

Suf(z) = jf(t)Dn(x—t)dtz jf(x—t)Dn(t)dt

_ JO (Fl@ — 1) + f(e + 1) Da(t) dt,

it suffices to show that for every monotone g we have

s

lim | g(t)D,(t)dt = %g(OJ”).

n—o0 0

We may also assume that g(0") = 0 and that g is increasing to the right
of 0. Now we need to show that the sequence of integrals converges to
0.

Given € > 0, choose § > 0 such that g(t) <eif 0 <t <. Then

s

g §
f g(t) Dy (t) dt =J g(t) Dy (t) dt+f g(t) Dy (t) dt.

0 0 0

2 The functions of bounded variation are usually defined in a different way, but
it requires prior introduction of unnecessary (here, now) formalism.
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By the Riemann Localization Principle, the second integral tends to 0.
To estimate the first integral, we use the second mean value theorem
for integrals. For some y, 0 <y < d we have

J g(t) Dy (t) dt = g(5_)J D, (t) dt.

0
Furthermore,

L " Duit) dtl

L sin((n + 3)t) (Sirll% - %) dt‘ +

fl 2‘
)

t
Hence Sg g(t)D,(t)dt < Ce. O

sing

Now we prove another criterion. The two are incomparable, i.e.
there are examples of functions which satisfy hypotheses of one but
not the other, both ways. Other, more general criteria are also known.

Recall that
D, (t) dt :J D et at :J ¢ dt = 2.

—T —Tr |k|<n —T

THEOREM 8.5 (Dini Criterion). Let f € C(T) and x € T. If there
exists & > 0 such that

[ emnzien,
It|<5 t

then lim,, o, S, f(z) = f(z).
PROOF. Since the integral of D,, equals 27

<

t

f sin((n + 3)t) dt‘

Y 2

M.
t
f ﬂdt\w
0 t

dt + 2 sup
M=>0

&ﬂ@—f@%ir(ﬂx—w—f@»ﬂﬂﬁiﬁﬁ

—T

dt

it
sm2

=J ...dt+f co.dt
It|<s s<|t|<n

By the Riemann-Lebesgue lemma both of these integrals tend to 0.
The second — if we use the Riemann Localization Principle, the first —
since we assume the function

f(l’ - ti - f(I) ]1|t\<6(t)

to be integrable. Indeed, we have

fla—t)— @], PN
jt<5 = Jt|<6 |f( t) f( )‘ |t|

| sin £

2
2

—= | dt
sin &
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and t — L is a function decreasing to 1 for both ¢t — 0" and ¢t — 0.
More particularly,

for0<t<d<m.

This means that

flx —1t) — f(x)

i t
SlIl2

is integrable and we use the Euler formulas to argue like in the proof
of the Riemann Localization Principle to show that

J5f(93—t)—f(ﬂf)

sin

- sin((n + 3)t) dt
2

converges to 0 as n — 0. ]

9. Cesaro means and Fejér kernel

. Consider a numerical series
o0
Cotcrte+...= ch
k=0

and let S, = >, _, ¢ be its partial sums. The series is (conditionally)
convergent if the sequence S,, converges. Otherwise, it is divergent.
Notice that the series

2=
k=0
is divergent. However, the partial sums form the sequence 1,0,1,0, ...
and one may “intuitively” say, that the “limit” of these numbers is
equal to 3.
Let us try to give it a precise meaning. Consider the arithmetic
mean of the partial sums

So+S1+ ...+ Sy
ON = .
N N
If the series oy converges, then we say that the series Y| ¢, is summa-
ble in the sense of Cesaro (it does not make it convergent!).

LEMMA 9.1. Let ¢, be a numerical sequence and let

- So+S1+...+ Sy
S, = , = .
]§)Ck ON N

If lim,_, S, = a then lim,_,, 0, = a

We leave the proof as an exercise.
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DEFINITION 9.2. Consider the arithmetic mean of the Dirichlet
kernels

Ko(r) = - i - i)

K, is called the Fejér kernel.

— Ds(t)
10/ — Dy(t)
. _a % T

F1GURE 2. The Fejér kernel.

THEOREM 9.3. The Fejér kernel may also be defined explicitly as
1 1—cos((n+1)z)
n+1 1 —cosx
for x #0 and K,(0) =n+ 1.
PROOF. We have from identity (12) that
(€ — 1)D,(x) = elm+D _ g=inz
Then notice the following identities

(e —De™ -1)=1—e"—e™+1=2—2cosx,

K,(z) =

Hence

(n+1)(2—2cosz)K,(z) = Z (e'FHle — emtkr) (g7 — 1)
k=1

el ei(n+1)a: -1 —i(n+)z _ 1 ]
( ( ) € ) (e—wj _ 1)

eir —1 e~ —1
_ eia: (ei(n+1)w o 1) (_e—ix) +1— e—i(n+1)m

-1 ei(n+1)x +1— e*’i(’ﬁr‘rl)m

=2—2cos ((n+ 1)z)
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and finally
K, (2) = 1 2—2COS((TL+1)1‘)'
n+1 2—2cosx
We also have
1 < (n+ 1)
K, (0) = 2 )= —+— = 1. O
(0) n+1kz_;)(n+) n+1 nt

COROLLARY 9.4. We have K,(x) = 0 and §" K, (x)dx = 2.

DEFINITION 9.5. An approximate identity on T is a family of inte-
grable functions {k,} with the following three properties:

(1) There exists a constant ¢ > 0 such that {* |k, (z)|dz < ¢ for
all n e N.

(2) §7_kn(x)dz =1 for all n e N.

(3) For any neighbourhood § > 0 we have S|x‘>5 |k (z)] dx — 0 as
n — .

Notice the subtle difference between the first two properties.

EXAMPLE 9.6. Let k(z) be a continuous function supported within
(—m,m) < R with integral one. Let

Then k,(z) is an approximate identity on T. Here we consider k, as
a restriction of a function defined on R to the interval [—m, 7], but we
know that k,(—7) = k,(7) = 0, so k,, € Cper([—7, 7]) = C(T).

The last property follows from the fact that

f |k(z)|dz =0 for nd > .
|z|=nd

LEMMA 9.7. The Dirichlet kernels multiplied by % are not an ap-
proximate identity.

Proor. While we have 5= {" D, (z)dz = 1, we also know from

Lemma 7.9 that {"_|D,(x)] dz — o as n — oo (note: the third prop-
erty in the definition of approximate identities also fails for the Dirichlet
kernels). O

LEMMA 9.8. The Fejér kernels multiplied by % are an approrimate
identity.

PrOOF. We have K,,(z) = 0, hence |K,(z)| = K,(z) and

1 T
— K,(z)dx = 1.
2 ),
Notice that
1 1—cos((n+1)x 1 2
K,(x) = ( )7) <

n+1 1——cosx T n+11-—cosx
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and for x € [—m,—d] U [J, 7] we have
1 —cos(z) = 1 — cos(9).
Thus for every € > 0, we may find n large enough that
11— +1 1 2
K, (x) = cos ((n+ 1)x) < <
n+1 1 —cosx n+11-—-cosd

i.e. for every 0 > 0 the sequence of functions K, converges to 0 uni-
formly on [—m, —6] U [0, 7]. Therefore

K,(x)dxr - 0 asn — o0. O

|z|>d

REMARK 9.9. Notice that 1—cosx = 2sin(%)?, thus the Fejér kernel
may also be expressed as

Kn(z) = ! (Sin((nﬂ)g))%

n+1 sin%

THEOREM 9.10. Let k, be an approximate identity on T. If f €
C(T) then |k, = f — fleo = 0 as n — 0.

PROOF. Let ¢ > { |k, ()| dz. Since f is continuous and T is com-
pact, we may find 6 > 0 such that

|f(x —h)— f(x)] < 23 for |h| < 6 and every z € T
c

and then find Ny > 0 such that for n > Ny we have
3

[k (y) dy < 7
L<|y|<7r 4||fHOO

Using these estimates we conclude that

sup |(ky * f)(x) — f(x)| = sup

zeT xeT

Lﬁdwﬂx—wdy—ﬂ@
<ngmmMMW—w—me@

zeT

—sup ([ 10l =0 - )] dy

zeT

+ LQKJ%@Mﬂx—m—f@ﬂ@>

which shows that k,, = f converges uniformly to f on T as n — co. [

COROLLARY 9.11. If f 1s a continuous 2m-periodic function then
%f « I, converges to f uniformly.

We conclude this section with the following observations.
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e For f € C(T), the partial sums of its Fourier series S, f are
examples of trigonometric polynomials.

e The partial sums may be represented by convolutions with
Dirichlet kernels S, f = D,, = f.

o The Fejér kernels K, are the Cesaro means of Dirchlet kernels.

e The Cesaro means o, f of the Fourier series of the function f
are the convolutions with the Fejér kernels o, f = K, = f.

e The convolutions K, = f are trigonometric polynomials.

« Koo f 30 f.

Therefore we now have a constructive method of approximating
(uniformly) continuous functions by trigonometric polynomials. Pre-
viously, we had to rely on the Stone-Weierstrass theorem, which only
says that such an approximation exists (but also covers other algebras,
which will be useful when we discuss wavelets).

Moreover, notice that in Theorem 9.10 we could only require the
function f to be continuous on some compact set K around an arbitrary
point ty and then prove that

sup |k, = f(z) — f(x)] >0 asn — .
zeK

Then we would obtain the following result.

COROLLARY 9.12. If f is a bounded integrable function which is
continuous at tg then

lim if # Kn(to) = f(to)-

n—a0 27T

~

This means that the Fourier series Y, f(n)e™ of the function f
(bounded) is summable in the sense of Cesaro to the values of f at its
points of continuity.

10. Gibbs phenomenon

If a sequence of continuous functions converges uniformly, then its
limit is also a continuous function. Thus if a function f is discontinuous
at a point x, then its Fourier series cannot be uniformly convergent to
f in the neighbourhood of this point. It turns out that the “tip” of
the largest “wave” of the Fourier series near the discontinuity point
converges to a value which differs from either f(z™) or f(xz~) by about
9% of the size of the “jump” |f(x*) — f(x7)|. The same can be said
about the smaller “waves”, with smaller differences.

This phenomenon is called after Josiah Willard Gibbs who de-
scribed it in 1899 (it was also observed earlier by Henry Wilbraham
in 1848 and studied in more detail by Bocher in 1906).

The effects of this behaviour have significant impact in applications,
because it implies that near a point of discontinuity the function cannot
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i i
Y V
AN £\
v V

FiGURE 3. Gibbs phenomenon observed for a function

f(x) = i%; notice the decreasing sequence of waves near
the point of discontinuity.

be well approximated by the partial sums of its Fourier series, no mat-
ter how “long” of a sum we consider. Notice that in the digital world,
all functions are essentially step functions. Fortunately, the Gibbs phe-
nomenon does not occur when using the Cesaro method of summation
(Figure 4) and other methods are also available as a remedy.

-

|
3
|
INIE
IR

FI1GURE 4. Gibbs phenomenon is eliminated by Cesaro summation.

Let us describe this effect on the example shown in Figure 3

——1, whenxe[—n,()),
( 2

,  when z € [0, ),
whose Fourier series is given by the following series of sines

2 i sin(2n + 1)z
- .

o 2n +1

THEOREM 10.1. If

S, f(z) = 2 Z sin(2k + 1)£B.

e (2k+1)
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then
lim maX{Snf(a:) -5 0<z< —}‘

n—0o0
1 (7 si 1
=—J SY i — = ~ 0,089,
TJo U 2

PrOOF. Using the Euler formulas in a way similar to the calculation
of the Dirichlet kernel in expression (12) we have

d n—1 n—1 ‘
d ( n— 1f Z 2cos(2k + 1)z = Z PRICEERDES
X — S~
2n—1 ]
. 1— 621(271:0)
—i(2nx) iz (sz)k 71(27133) o L
Z ‘ ¢ 1 — e2ix
B e i(2nx) _ et i(2nz) Sln(an)
- em—e® sinz

Therefore

7TSn71<l’> :J Mdyzf wdy+wn(x>
0 0

siny
2nx _:
sin
= J Y dy + W, (x),
0 Y

where

Wy(x) = fc ( ,1 - 1) sin(2ny) dy.

o \siny vy
Thanks to the de I’'Hopital rule we obtain

) 1 1 . Yy —siny (H) .. 1 —cosy
lim(——--) =lim—F— = lim —————
y—0 ysmy y—0 Sy + ycosy

() s
=" lim -
y—02cosy — ysiny

siny _ 0

Therefore for an arbitrary ¢ > 0 we may find a 6 > 0 such that for
every x € (0,9) and every n € N we have

101 1
Wn(x)gf , ——‘dy<5.

0
Hence, for x € (0, 0),

1 1 2T gin y 1
Sn— - dy — - +¢.
of ( ) 2 Jo " Y 5 €
Notice that the function

I(x)=f smydy
o Y
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attains its maximum at x = w. Therefore for every n such that n > 7/0
we obtain

1 1 [* siny 1
oggw&q@%—ﬂ<éﬁz;[, y Wogte
1 (7 si 1
<—f Y dy— - +e~0,08 +e. O
T™Jo Y 2

11. Curves on the plane and isoperimetric inequality.

Let us try to find a curve on the complex plane which can be laid
with piece of twine of a given length, say 27 meters and encloses the
largest possible area. We are going to assume that the curve has no
sharp edges (is C') and does not intersect itself.

Let v(s) = (x(s),y(s)) be the parametrization of the curve. With-
out loss of generality we may assume that s € [0,27] and |7/(s)] = 1
(we lay the twine while walking at a constant speed, placing each 155-th
centimeter of thread at the point (x(s),y(s)).

THEOREM 11.1. Let A be the area bounded by the curve satisfying
our assumptions. Then A < m. The equality holds if and only if v is a
circle of radius 1.

PRrROOF. We know that 2/(s)? + y/(s)®> = 1. It follows from the
Green theorem for path integrals that

a=l f (edy - yde)| = - f ")y (s) — y(s)a'(s) ds|.

2 2
Let z(s) ~ Y. a,e™, y(s) ~ > b,e™* be Fourier series of  and y. Then
z'(s) ~ Z anine™, y'(s) ~ 2 bpine’™

are the Fourier series of their derivatives. From the Parseval identity

we have
A= Y nlaby =), 22 (lanf + 5a2) = 1.

Notice that
(14) b — bntin| < 2|an||bn| < |an|?® + [bn]?

Because |n| < |n|?, we have
A<ry] |n|2<|an|2 + |bn|2> —
n

If A= then, because |n| < |n|? when |n| > 1, we have
z(s) = a_1e”" + ag + ae”,

y(s) = b_1e™" + by + bie”.
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The functions x(s), y(s) are real. Therefore a_; = a; and b_; = by,

which implies (|a1]* + [b1]?) = 3. Moreover, inequalities (14) must

reduce to equalities. This gives us [a1|* = |b1|* = 1. Hence

From |anb,, — bnty| = % it follows that |sin(a— )| = 1, that isa— 5 =
km + 7/2. Finally,

z(s) = ag + cos(a + s), y(s) = by + sin(a + s).

Let zg = ag + iby. Notice that the curve 7y is described by the mapping
7(s) = 2o+ €'®*%) which is exactly like tracing the unit circle centered
at the point 2y, starting at the phase o and going either “left” or
“right”. OJ

We now ask kind of an opposite question: given a trigonometric
polynomial, or a convergent Fourier series of a continuous function on
T, how to draw the curve it descibes on the complex plane?

Recall that

1 27 Cimt
Cp = — f(t)e " dt,
2 Jo

hence
2T

1
Co = % . f(t) dt,

is the mean value of f. If the curve was made of a uniform cord, cgy
would be its centre of mass (arguably, the best approximation of a
curve by a single point). Then

91 971
)

¢ = re’ c_1 =r_j€

is a pair of vectors and so on for each |n|. We are going to treat t as
an angle changing from 0 to 27 = 0 in 1 second at a constant speed.
At t = 0 we have

£0) =) cn,
neZ
It is simply a sum (possibly infinite) of vectors pointing at the spot
on the curve, where we started its parametrization. Then ¢ turns by
a small angle as we trace the curve. Let us look at the individual
components of the sum

f(t) = Z cne™.
neZ
We may notice that for each n € Z, the mapping t — r,e'@ ") de-
scribes in a unique way the movement with frequency |n| hertz along
a circle of radius r, centered at 0, which starts at the phase #,, and
travels in one or the other direction.
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Thus after time ¢ has passed, on the one hand, we moved along the
curve, and on the other, we need to add all the vectors, each of which
has turned at its own speed, in its own direction along its own circle.
Hence the curve is an image of epicicles of epicicles of epicicles... all
the way down. In essence, this is what the geo-centric Ptolemaic view
of the Solar system aimed to model. It is not wrong, in this sense, but
horrendously complicated.

A beautiful visualization of this behaviour and further explanations
may be found on an excellent YouTube channel 3bluelbrown:

e https://www.youtube.com/watch?v=r6sGWTCMz2k
e https://www.youtube.com/watch?v=-qgreAUpPwM

12. Temperature of the Earth?®

Consider the yearly fluctuation of temperature at a given point on
Earth and assume it is a periodic function of time. Then the temper-
ature u(t,z) at time ¢ > 0 and depth x > 0 below that point is also
periodic in ¢ for every x. It is natural to assume that |ulo < || f]le < 0.
Let us adjust units of time and space such that the length of the year
is 27 and the temperature conductivity of the soil equals % (in reality

the latter is about 2 - 10_3%). Then we have

0 1 02
au(taﬂf) = 5@“(15,93)
and
u(t,z) = Z cn(w)e™,
nez

where
27

1 .
cn(z) = %L u(t, z)e "™ dt.

We thus also have

632 1 2m &2 Cin
@Cn(x) = % . @u(t,x)e tdt

1 27 .
(15) = 22u(t, r)e”"™dt = 2inc,(z)

o ), “ot
= (VInl(1 £1)) e (@),
where the sign is + for n > 0 and — for n < 0. Moreover,
2m
l0) = 5o | A de = flo.
A general solution to equation y” = ay is
y(x) = eV 4+ BemVar,

3Adapted from Dym & McKean and Sommerfeld
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but we assume |¢,(z)| < | f]w, hence by solving (15) we obtain
alw) = J(m)e” Wirl1£00),

In this way we arrive at the solution
u(t,x) _ Z f(n)e— nlz gintFiy/|nfo
nez

This means that the temperature at depth z, at the level of n-th “com-
ponent” €™ is damped by the factor exp(—4/|n|r) and is shifted in

time by +/|n|z.
Let the annual surface temperature be given by the sine function

et —e
)= ———.
f) -
Then f(1) = f(~1) = & and
—z i(t—x) —x ,—i(t—x)
u(t,z) = S ree =e “sin(t — x).

2i

At the depth x = 7 the function is damped by e™™ ~ % and completely
out of phase with the seasons — warmest in winter and coolest in sum-
mer. If we repeat this calculation with true units, we can discover that
this depth is about 4 meters, which is therefore the correct choice for
a root cellar.

The same calculation may be performed for daily fluctuations of
temperature. In this case we may discover that the same phenomenon
occurs already at the depth of 20 cm.



CHAPTER 3

Fourier transform

1. Schwartz class

DEFINITION 1.1. The space

SR) = {feC*(R): |m1|igloo|$|N| i f ()| < 0

dz™
for every pair n, N € N}

is called the Schwartz class or the space of rapidly decaying func-
tions. Let

pu(f) = sup || VL f ()]

We say that fi converges to f in S(R) if p, n(fx — f) £ 0 for every
pair n, V.

In simple words, the space S(R) contains those smooth functions
which together with all their derivatives decay to 0 stronger than any
polynomial grows to co.

The space S(R) is linear and completely metrizable, but it is not
normed (it is a so-called Fréchet space).

REMARK 1.2. We may characterize the space S(R) in another,
equivalent way. The function f belongs to S(R) if and only if for every
pair n, N € N there exists a constant C, n such that

(&) @)] < Con (L4 ]2)
PROPOSITION 1.3.
e If feS(R), then f'(z),zf(x), f(x — h) also belong to S(R);
e the class S(R) is an algebra;
e C*(RY) = S(R);
e the function x — e~ belongs to S(R).

DEFINITION 1.4. For f € S(R) we define
fier = | s

We call ]? the Fourier transform of f.

LEMMA 1.5. If f € S(R) and n € N then £ f(&) = (2mi&)" f(€)
and j&—:f = ((—2miz)" f(z))"
36
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PRrRoOOF. We have
R .
f f/(x)e—szﬁ dax
-R

= (f(l')e_%ixf) ‘sz — 2mig JR f(:v)egmf"f dr
—R

and by taking the limit with R — oo we obtain the result for the first
derivative. Now the general result follows from repeating the same
argument.

Consider

~ ~

fE+h) = f(§) ——
Y — (— 2mix (:U))(f)

0 ) e—27rixh -1
= J f(z)e2mit (— + 27rix> dx
—o h

Notice that
—2mizh 1

h

and so, because f is a rapidly decaying function, we can find R large
enough that

) —2mizh 1
J f(x)e 2t (6— + 27rix> dr < e
|z|>R h

independently of A. On the other hand, we may find h small enough
that

sup | < C(1+ Ja])

heR

—2mizh
h
for all |z| < R. O

COROLLARY 1.6. If f € S(R) then fe S(R).

PROPOSITION 1.7. Let f(z) = e ™ on R. Then f(&) = f(£).
PRroor. Notice that

-~ ®© 2 ]. «© 2
fOzJ e”dxz—J e’ dr = 1.
W=l 7)o

Moreover,

(&

+ 2mix| < ¢

0
(¢ = J —omize ™ e iy

—00

= iJOC (%e””ﬁ)e’%m§ der = —275]?(5).

—00

Let g(&) = 6“52]?(5). Then we have
g(6) = e F(E) + 2nee T f() = 0,
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which means that g is a constant function and g(§) = ¢g(0). But ¢g(0) =

~

£(0) =1 and thus f(€) = e "¢, O

While e=™ is the most important example of a fixed point of
the Fourier transform, it is not the only one. Others include (every
fourth of) the Hermite polynomials as well as the hyperbolic secant

_ 2
sechx = Pl

DEFINITION 1.8. We define the operation of convolution on S(R)
by
frg= f FW)g(x —y) dy.
R

PROPOSITION 1.9. Let f,ge S(R), aeC,ye R, ne N andt > 0.

~

Denote 1,f(x) = f(x +y) and f(z) = f(—x). We have

W) f+9=

(2) af = af;

et

(1) f = f; X
(5) T (€) = e F(Q);
(

DEFINITION 1.10. An approximate identity on R is a family of
integrable functions {k;} with the following three properties:
(1) There exists a constant ¢ > 0 such that §*_|ki(z)|dz < ¢ for
all t > 0.
(2) §7, ki(z)da =1 for all t > 0.
(3) For any neighbourhood § > 0 we have S|x‘>5 |ky(x)|dx — 0 as
t— 0.
LEMMA 1.11. The family
1 7|'.’L'2
hi(x) = —e ¢,
t( ) \/%
called the heat kernel, is an approximate identity.
DEFINITION 1.12. For f € S(R) we define the inverse Fourier
transform

~ ~

fo) = flea) = | re)emae

THEOREM 1.13 (Parseval-Plancharel identity). Let f,g € S(R).
We have

&mwmm:&ﬂmmw
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COROLLARY 1.14. If f € S(R) then
(fy=r=0Ur

PROOF. Let Gy(z) = e~™@* and notice that h; = é\t We have
flo —hmf flo—¢ m@cx—hmf Fo — )GE) de

t—0
= hmj f(g)e%-ix{e—ﬂti d§ _ f f(€)€27ria:§ df

=0 J_ o
4

COROLLARY 1.15. Let f,g € S(R). We have

ff s ds = | FO5E

HfHL?(R) = | fl2@) = | fl 2w

3)
fR F()g(x) dz = f 7)) da

LEMMA 1.16. If fi, f € S(R) and fy — f in S(R), then fr, — f in
S(R)

COROLLARY 1.17. The Fourier transform is a homeomophism from
S(R) onto itself.

In the next theorem we prove that a function and its image under
the Fourier transform cannot be simultaneously localized. It is also the
mathematical argument behind the Heisenberg uncertainty principle in
quantum mechanics.

We measure “localizaAtion” by the variance of a probability density,
here given by [¢|*> and |¢|>. In quantum mechanics, those correspond
to wave functions.

THEOREM 1.18 (Uncertainty principle). Let ¢ € S(R) be such that
H?DHLQ(R) = ]_ Then

([ ewra)( [ everae) =

PROOF. Integrating by parts we obtain

e O e O

- | (v @@ + ) do
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Applying the Cauchy-Schwarz inequality we get

<2 f 2l ()| ()] da
R
1/2 1/2
\2 2 2d / 2d )
<o [ewwpar) ([ wera)
Notice that

| WP -4 | @i 0
R R
REMARK 1.19. The equality in above theorem holds only when

(z) = Ae P” B>0, A?=./2B/r.

REMARK 1.20. The inequality

([ aotora)( [ - sriera) > o

1s also true for every xg,& € R.

2. Elements of measure theory

Consider a non-empty space X. By P(X) we denote the power
set of X, i.e. the family of all subsets of X.

DEFINITION 2.1. We say that a family R < P(X) is a ring (of
subsets of X) if

(1) TeR;
(2) it A,BeR then Au B, A\BeR.

A family R is a field (or alternatively an algebra) if it is a ring and
X eR.

In other words, a field is a family closed under a finite number of
operations on sets like taking unions, intersections, complements or
differences.

ExXAMPLE 2.2. {J} is a ring. If X is an infinite space and R is a
family of all finite subsets of X, then R is a ring, but it is not a field.

LEMMA 2.3. Let R be the family of subsets A < R, which may be
represented as

(16) A = O[Gk,bk>,

for some n € N and ag,b, € R. Then R is a ring of subsets of R.
Moreover, every AinR may be represented in a form of (16), where
[ak, b)) are pairwise disjoint.
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PrROOF. We have ¢ = [0,0) € R; by the very structure of for-
mula (16) it follows that the family R is closed under finite unions.
Notice that any set of the form [a,b)\[c,d) can only be:
e empty
e an interval [x,y),
e when a < ¢ <d <b,aset [a,c)uld,b)eR.

Now we may use induction to show that [a,b)\A € R for every set A
given by formula (16). Then it follows that R is closed under taking a
difference of two sets. g

DEFINITION 2.4. We say that a family A < P(X) is a o-field or a
o-algebra (of subsets of X) if
(1) e A;
(2) if Ae A then X\A € A;
(3) if Al, A27 ... € A then U;.LO::l An e A.

In other words, a o-field is a family closed under countable opera-
tions on sets. Notice that a o-field is also a ring and a field.

EXAMPLE 2.5. {J, X'}, P(X) are o-fields.

The notion of a o-field is rather an abstract one and it may be diffi-
cult to determine whether a given set belongs to a given o-field. Most
often, however, we decribe such families by well-understood generating
sets.

PROPOSITION 2.6. If A, are o-fields, then (), Aa is a o-field.

Let F be any family of sets. Because every o-field is a subset of
P(X) and because of the above proposition, by considering all o-fields
that contain JF and then taking their intersection, we are left with the
smallest o-field A such that F < A. We say that A is generated by
the family F and denote A = o(F).

DEFINITION 2.7. The o-field generated by the family of open sub-
sets of X is called the Borel o-field and we denote it by Bor(R%).
Elements of Bor(R?) are called Borel sets.

LEMMA 2.8. The family F of intervals [p, q), where p,q € Q gener-
ates Bor(R).

PROOF. Notice that [p,q) = (,_,(p — £, q), thus [p,q) is a count-
able intersection of open sets, and hence belongs to Bor(R). Thus
F < Bor(R) and o(F) < Bor(R).

For every a < b we may find sequences of rational numbers p,, ¢,
such that (a,b) = (,_,[Pn, ¢) and thus (a,b) € o(F)

Recall that every open set U — R may be represented as U =
U(rn, Sn), where r,,, s, € Q (R is a second-countable space).

It follows that Bor(R) < o(F). O
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It is not trivial to show that there exists subsets of R which are not
Borel sets. It is even more difficult to construct such sets.

2.1. Set functions. A function defined on a given family of sets
is called a set function (it is only a descriptive name, it is still a
function in a regular sense). Here we only consider positive extended
real-valued set functions, i.e.

piF—[0,+x], FcPX)

DEFINITION 2.9. We say a set function is additive if for every E, F' €
F such that En F = ¢ and F U F € F we have

p(E U F) = p(E)+ p(F)

Notice that if only there exists a set E such that pu(E) < « and
& e F, then p(E) = p(E v &) = u(F) + () and () = 0. This
means that either u() = 0 or u(E) = o for every E € F.

From now on we will only consider set functions on rings (or o-fields,
which are also rings).

PROPOSITION 2.10. Let p be an additive set function on a ring R
and E, F, E; € R. We have
o if EC F then u(F) < u(F);
o if EC F and u(E) < o then p(F\E) = p(F) — w(E);
o if E; are pairwise disjoint then /L( U, EZ) = > w(E).
DEFINITION 2.11. We say a set function p on a ring R is count-

ably additive if for every pairwise disjoint sequence E; € R such that
Ui, Ei € R we have

M<GE> - guwn).

Notice that since the function is extended real-valued, the expres-
sion above is meaningful both in the case when the series on the right-
and side is convergent and when it diverges to +oo.

PROPOSITION 2.12. Let i1 be a countably additive set function on a
ring R. For every sequence E, € R such that Uf:l E, € R we have

((15) < S0t

PRrOOF. Let Ay = Ey and A, = E,\J,_, Ei for n > 1. The sets
A, are pairwise disjoint, 4, < E, and | J,_, A, = J_, E,. Therefore
w(A,) < p(E,) for every n and because of countable additivity

o(Un)=n(Ua) - Nty < ey o

n=1 n=1
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DEFINITION 2.13. A countably additive set function p defined on
a o-field and such that u(J) = 0 is called a measure.

EXAMPLES 2.14.
e Let f: X — [0,00] and let R be the ring of finite subsets of
X. Then

ur, ) = Y fla)
k=1

is an additive set function such that u(f) = 0.
e Choose zp € X and let p be defined on P(X) by u(A) =1 if
zo € A, n(A) = 0if 9 ¢ A. Then p is a measure.

DEFINITION 2.15. A measure space is a triplet (X, X, 1), where
Y < P(X) is a o-field and p : ¥ — [0,00] is a measure. We say a
measurable space is
e finite if ;(X) < o (or probabilistic if u(X) = 1);
e o-finite if there exist sets E,, € ¥ such that | J, £, = X and
p(E,) < oo for every n;
e complete if for every pair of sets E, F' such that F' < E when
E € ¥ and u(E) =0 then F' € ¥ (and necessarily p(F) = 0).

2.2. Outer measures.

DEFINITION 2.16. Let p be a countably additive set function on a
ring R. For every £ € X we define the outer measure p* : P(X) —
[0, 0] by

W (E) = inf{Zp(Rn) "R,eR, EC URH}

(we assume that inf J = c0).

Throughout the rest of this section we keep the notation for X, R,
W, W etc. to denote relevant objects without change once they are
introduced.

PROPOSITION 2.17. The outer measure u* has the following prop-
erties
® M*(@) =0;
o if EC F < X then u*(F) < pu*(F);
o if B, € X then p* (U, En) <0, 1*(En).

ProOOF. The first two statements are easy to prove and the third
is obvious if p*(E,) = oo for at least single n. Suppose pu*(E,) < o
for every n and fix € > 0. Then there exist R} € R such that

n * €
E,c| JRy and ) u(Rp) < p*(B.) + o
k k
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Then
UJE. < EBr
n n.k
and

M(LnJE”) S;(M*(En)+26—n> zzn:u*(En)+€. O

Given those properties, we say that an outer measure is monotone
and countably subadditive. In general, it is not countably additive on
P(X), but we are going to prove that it is countably additive on o(R)
(and hence is a measure on o(R)).

DEFINITION 2.18. We say that a set £ € X is p*-measurable if it
satisfies the following Carathéodory condition

p(A) = p (An E) + pu*(An E° for every A< X.
By Meas(u*) we denote the family of all p*-measurable sets.

THEOREM 2.19. The family Meas(u*) is a o-field and p* restricted
to Meas(u*) is a measure.

PrROOF. We have ¢J € Meas(p*) and if £ € Meas(u*) then E° €
Meas(pu*). Let E, F € Meas(u*) and A < X. Then

p(A) = (AN E) + p*(An E)
=ur(AnEnFE)+p (AnEnF)+ pu*(An E
> (AnEnF)+ p*(An (En F)),
because (AN ENF) U(ANnE )2 An(E°VUFY)=An(EnF)°
and p* is subadditive. The converse inequality is always true, thus
E n F € Meas(p*). This means that Meas(u*) is a field.

Let E, F € Meas(p*) be a pair of disjoint sets. Then for A < X we
have

p(An(EUF)) = p* (An(EUF)nE) +p* (An(EUF)NE°)
= (AnE)+pu (AnF).

Let Ey, Fs ... be a sequence of disjoint sets in Meas(u*). By induction
we have

(1n(05)) - Ewans

Notice that by taking A = X we obtain that p* is an additive set
function on Meas(u™*).
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Let E = | J E,,. Because Meas(p*) is a field and p* is monotone,

[(A) = (Am Cj >+ (Am UE))

“(An Ey) + p"(An E.

HM:

Because p* is countably subadditive, we have
0
pH(A) = D (AnE) +i* (AN E) = p*(AnE) + " (AN E°)

and because we always have the converse inequality,
pr(A) = p (A0 E) + p*(An E°).

Therefore E € Meas(p*), which means that Meas(p*) is a o-field. Mo-
rover, by taking A = E we get

0 0
Z (En Eg) + p*(En E° Z,u
i1 k=1

which means that p*(E) is a measure on Meas(u*). d

THEOREM 2.20. We have o(R) < Meas(u*) and u(R) = u*(R) for
every Re R.

PROOF. Let R € R and A < X. If p*(A) = oo, then we have
w(A) = p*(An R) + p*(An R°. If p*(A) < oo, then for every
e > 0 there exists a sequence of pairwise disjoint sets R, € R such that
Ac |, R, and Y, p(R,) < p*(A) + e. Then by monotonicity of p*
and additivity of p we have

WAAR) +p(AnR) <Y <u(Rn A R) + u(Ry RC)>
= (R < W (4) +e

thus p*(A) = p*(An R)+ p*(An R°) and R € Meas(p*). By definition
we have p*(R) < p(R). If R < |, R, for pairwise disjoint R, € R
then, because p is countably additive,

= p* (R JRa) = 2 (R 0 Ry) < i (R) O

THEOREM 2.21. Suppose X s o-finite with respect to u, i.e. there
exist Xy, u(X,) < o0 such that X = J,_, X,,. For every E € Meas(u*)
there exist A, B € 0(R) such that A< E < B and p*(B\A) = 0.
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PRrROOF. First suppose that X € R and pu(X) < . Then for
E € Meas(p*) and k € N there exist R¥ € R such that

BelJRs w(B)+ = Y (R

Let
o 0
B={JR:
k=1n=1
Then B e o(R), E < B and for every ke N
e}
N 1
pi(B) < 3 pl(Ry) < p(E) + 7
-1

hence p*(E) = p*(B). In the same way we may find C' € o¢(R) such
that £ < C and p*(E°) = p*(C). We have u(X) = p*(E) + p*(E°),
thus if we let A = C° then
pH(B) = p*(E) = p(X) = p*(E°) = p(X) = p*(C) = p*(A).

This means that p*(B\A) = 0, because p* is additive on Meas(p*) and
o0(R) < Meas(u*)

In the general case we consider a sequence X, such that p(X,,) < o
and X = [ J, X, and a sequence of rings

R,={ReR:Rc X,}.
For E < X we define F,, = X n X,, and using the first part of the
proof we may find A,, B, € R,, such that A, € F,, <€ B, < X,, and

w* (Bn\Ay) = 0.
Then it suffices to take A = J, A, and B = | J,, B. O

SUMMARY. The construction of a measure (on a o-field) from a
countably additive set function on a ring is an important one, but
it is not essential to remember all the fine details. Below is the
summary of the properties that follow from the construction.

THEOREM 2.22. Let

e X be a non-empty space,
R be a ring of subsets of X (Def. 2.1)
g R — [0,40] be a countably additive set function
(Def. 2.11) such that () =0
w* be the outer measure induced by pu (Def. 2.16)
Meas(u*) be the family of pu*-measurable sets (Def. 2.18)
Assume that there ezist sets X,, € R such that p(X,) < o and
Uf:l =X. If

mz{AuB:Aea(R), p*(B) = 0}
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then
(1) The family o(R) is a o-field and o(R) = Meas(p*).
(2) The outer measure p* is countably additive on o(R), i.e.

it is a measure on o(R).
(3) We have pu(R) = p*(R) for every R € R; in other words,

w* is an extension of u onto the o-field m.

(4) For every E € 0(R) and € > 0 there exists B = | J_, R,
R, € R, such that u*(B\F) < ¢.

(5) For every E € o(R) there exist A,B € o(R), such that
AC E < B and p*(B\A) = 0.

3. Lebesgue measure

Let R be the ring of subsets A < R, which may be represented as

N
A= Jlan, bn),
n=1

for some N € N and a,, b, € R. Recall that we may assume that the
intervals [a,, b,) are disjoint.

PROPOSITION 3.1. Let [ay,,b,) be a finite or infinite family of dis-
joint intervals. If |, [an,bs) < [a,b) then >, (b, —a,) < b—a.

PRroOF. If the family is finite, we obtain the result by induction. If

the family is infinite, we notice that for every N € N we have

N

Z(bn—an) <b-a

n=1
(because the result holds for finite families). Therefore the series is
convergent and the result follows (the sequence of partial sums is non-
decreasing and bounded). U

PROPOSITION 3.2. Let [ay, by,) be finite or infinite family of disjoint
intervals. If [a,b) S o [an, by) then b—a < > (b, — a,).

n=1 n=1
PRrROOF. If the family is finite, we prove the result by induction.
For an infinite family the situation is a bit more complicated then
before. For a fixed ¢ > 0 we consider a closed (and hence compact)
interval [a,b — €]. Then [a,b—¢) = |U,_,(a, — =,b,) and because of
compactness we may choose a finite sub-covering
N
[a,b—¢) S [a,b—e] < ] (an — 5, bn)
n=1

Then we may use the finite case to obtain

N e
b—a—eéZ(bn—an—z%)<Z(bn—an)+5

n=1 n=1
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and the result follows because € may be arbitarily small. U

LEMMA 3.3. Let A : R — [0,0] be defined by

A(L]jan, n) Zb

n=1

where |ay, b,) are disjoint intervals. The function X is well-defined (i.e.
it doesn’t depend on the choice of representation of any given set).

PROOF. Let

N
R = U[anu n
n=1

where |[a,,b,) are pairwise dlSJOlIlt and so are [c,dg). Consider all
possible intersections, I, = [an,bn) N [ck,dr). Then every I, is
either empty or 1t is an interval. Moreover, for every n € N we have
[an,by) = Uk 1 Ini; and by the two previous propositions we know that

Ck? dk

HCN

We can make a similar observation for intervals [cg,dy). Finally, we
have

Z (bn — an) = Z Z AMLnk) = Z(dk — cx) O

LEMMA 3.4. The function A : R — [0,00] is a countably additive
set function.

PROOF. If [a,b) = J”_, R, and R, = |Jr",[a},b) then by the
two propositions we proved before

o Kp 0
AMla.0)) =b—a=> Y (bp—ap) = Y AR
n=1k=1 n=1
The general case follows by induction. U

THEOREM 3.5. There exists a unique measure X on Bor(R) such
that A([a,b)) = b— a.

PROOF. Because A is a countably additive set function on a ring
and R = [J”_,[-n,n) we can prove existence of Py by consdering the
extension of A to Meas(A*) and then the restriction of A* to Bor(R) =
o(R).

We are not going to prove uniqueness (but it is not very difficult).

O

DEFINITION 3.6. We call A\ = \ the Lebesgue measure.
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DEFINITION 3.7. A measure defined on the o-field Bor(R) is called
a Borel measure.

THEOREM 3.8. If C is the Cantor ternary set then A\(C) = 0.

ProOF. Consider the sequence of sets

that we consecutively “cut out” in the construction of the Cantor set.
They are pairwise disjoint and each A, is itself a finite sum of pairwise
disjoint open intervals. We have A\(A,,) = 2"*13%. Then

AC) = )\([O, 1]\71@1/1”)

=1—Z)\(An)=1—% (2/3)" = 0.

n=1 n=1

g

THEOREM 3.9. The o-fields Bor(R) and Meas(\*) are not equal.
The measure space (R, Bor(R), \) is not complete. The measure space
(R, Meas(A\*), \) is complete.

PROOF. It can be shown that the cardinality of Bor(R) is equal
to ¢. But the Cantor set has measure zero and therefore all of its
subsets are A*-measurable. The cardinality of P(C) is 2° > ¢, hence
Bor(R) # Meas(A*) and (R, Bor(R), A) is not complete.

The completeness of (R, Meas(A*), A) follows from the construction

of Meas(\*). O

THEOREM 3.10. For every B € Bor(R) and x € R we have z + B €
Bor(R) and AN« + B) = A\(B).

PrOOF. Let A be the family of those B € Bor(R), for which all
translations x + B are Borel sets. Then A certainly contains all open
intervals (a,b). On the other hand A is o-field (if A € A then A°e A
and if A, € A then |, A, € A), hence A = Bor(R).

For a fixed x consider a set function p on Bor(R), given by pu(A) =
Az + A) Then p is a measure and for every a < b we have p([a, b)) =
AM[z+b,z+b)) =b—a = \]a,b)). It follows that u(R) = A\(R) on the
ring R of finite unions of intervals, and hence pu(B) = A(B) for every
B € Bor(R) because of uniqueness of the extension. g

REMARK 3.11. In fact all measures on R with the property that
w(B) = p(x + B) are given by c\ for some ¢ = 0.

COROLLARY 3.12. Consider the restriction of X to the interval
[-7, 7] =~ T. For every B € Bor(T) and t € [—m, 7] we have A\(e"B) =
A(B).



50 3. FOURIER TRANSFORM

4. Measurable functions

For every function f: X — Y and all sets A< X and B <Y, we
define the image of A by

fIAI={f(z)eY 1z e A},
and the pre-image of B

fB]={reX: f(zx)e B}.

Pre-image preserves all set operations, for example
f_l[ﬂBn] = ﬂf_l[Bn]v
for every sequence of sets B, € Y.

DEFINITION 4.1. We say a function f : X — Y is continuous if the
pre-image f~![V] of every open set V < Y is open in X.

REMARK 4.2. Let f : R — R be continuous and V < R be an open
set. If wg € f7Y[V] then yo = f(xo) € V, Becasue V is open, for some
e > 0 we have (yo—e,yo+¢€) S V. Because of the Cauchy definition of
continuity of f at xg, we may find § > 0, such that (xo — 0,29 + ) <
f7YHVY, which is equivalent to saying that f~[V] is open.

Consider a fixed measure space (X, %, ).

DEFINITION 4.3. We say that a function f: X — R is Y-measur-
able (or simply measurable) if f~'[B] € X for every set B € Bor(R)
(notice that this definiton is independent of ).

LEMMA 4.4. Let G < Bor(R) be a family of sets, such that o(G) =
Bor(R), Then a function f : X — R is measurable if and only if
J7HG] € X for every G e G.

PRrOOF. Consider a family A which consists of those B € Bor(R),
for which f~![B] € ¥. Then A is a o-field: if A, € Aand A =], A,
then f~'[A,] € ¥ for every n and fHA] =, f'[A.]eX. If Ae A
then also A¢ e A, because

AT = (A e .
Because A is a o-field, then from G < A it follows that Bor(R) =

o0(G) € A, thus A = Bor(R), which proves that the condition is suffi-
cient. It is clear that it is necessary as well. U

COROLLARY 4.5. Fach of the following implies that f : X — R is
measurable:
o {v: f(x) <t} e for every t € R;
o {z: f(x)<t}eX for every t € R;
o {x: f(x)>1t}eX for every t € R;
o {x: f(x)=t}eX for every t € R.
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PROOF. Let G be the family of half-lines (—o0,¢) for ¢ € R. Then
f7YG] € T for G € G thus f is measurable, because G generates
Bor(R). O

COROLLARY 4.6. If a function f : R — R is continuous then it is
measurable with respect to Bor(R).

EXAMPLE 4.7. For every A € ¥ a function 1, : X — R, where
Ta(x) =1 for x € Aand 1u(xz) = 0 for = ¢ A is called an indicator
(or characteristic) function of a set A. Such a function is measurable,
because 1,'[U] is an element of the family {(J, A, A°, X} < 2.

For every B € Bor(R) the function 1p is thus a Borel function.
Notice that lg is not continuous at any point of the real line, which
shows that measurability is a much more general property.

LEMMA 4.8. If a function f: X — R is X-measurable and a func-
tion g : R — R is continuous then a function go f : X — R is
Y-measurable.

PROOF. . For every open set U < R, the set g~ ![U] is open because
g is continuous; thus

(go Ul =g [Ull e = O
COROLLARY 4.9. If a function f: X — R is X-measurable then
cf, f% ISl

are also Y-measurable.

LEMMA 4.10. If functions f,g: X — R are X-measurable then the
function f + g is X-measurable.

PRrOOF. . It suffices to show that for h = f + g and t € R we have
h='[(—o0,t)] € . But

{r:f(@)+g(e) <ty = | {o: f2) <p}n{z:g(x) <q,

p+qg<t,
p,q€Q

which can be easily verified, because Q in dense in R. Notice that the
union in the expression above is countable and hence belongs to >. [

COROLLARY 4.11. If functions f,g : X — R are ¥-measurable then
functions fg, max(f, g), min(f,g) are also measurable.

Proor.
fg— (f+g)22—f2—92,
max(f. g) = If - g|2+f+g’
min(f, g) —!f—g|2+f+g.
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It is convenient to consider functions f : X — R u {—o0,0}. Then
it is natural to assume that -measurability of f in addition means
that the sets f~1({—o0}) and f~*({o0}) belong to .

Under such a convention, for any sequence of measurable functions
fn + X — R, we may define for example sup,, f,,, without the need
to assume that the set {f,(z) : n € N} is bounded for every z € X.
Similarly, we may consider a function f(z) = limsup,, f.(z).

LEMMA 4.12. If functions f, : X — R are ¥-measurable then func-
tions liminf,, f,, limsup,, f,, inf, f,, sup,, f. are also measurable.

PRrROOF. We are going to show that the function f = limsup, f, is
measurable. It follows from the identities

fo: f@) =ob = Ulz: fule) > &},

{z:f@) <ty = e fula) <t+1/k},
k m nzm

and a similar formula for —oo. The second identity follows from the
fact that f(z) < t if and only if for every k almost every element
(i.e. all of them except a finite number) of the sequence f, () satisfies
falz) <t +1/k. O

COROLLARY 4.13. A pointwise limit of a conergent sequence of
measurable functions is measurable.

Intitively, every countable operation involving measurable functions
leads to a measurable function. For example every function R — R
expressed by a formula, which contains countable quantifiers is a Borel
function.

LEMMA 4.14. Every Y-measurable function f : X — R may be
expressed as a difference of two measurable and non-negative functions

f=r=r.
PROOF. Let f* = max(f,0), f~ = —min(f,0) O
4.1. Simple functions.

DEFINITION 4.15. A function f : X — R is called simple if its
range f[X] is a finite set.

An indicator function 14 for every set A < X is simple. In fact, all
simple functions are finite linear combinations of indicator functions.

LEMMA 4.16. A function f: X — R is simple if and only if

N
n=1

for some a, € R and A, < X. A simple function is X-measurable if
and only if it is a linear combination of indicator functions of sets in 3.
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PROOF. . If f[X] = {ay,...,ax} then by taking A, = f~![a,] we
get f=2cnanla,.

Reversely, for a function of the form f = >, _\a,la,, its range
is contained in a finite set consisting of 0 and all numbers which are
finite sums of elements of the set {ay,...,ayx}. The second statements
follows from these remarks. O

THEOREM 4.17. Let f : X — R be a non-negative, X-measurable
function. Then there exists a sequence of measurable simple functions
sp: X = R, such that 0 < s1(z) < so(z) < ..., and lim, s,(z) = f(x),
for every x € X. Moreover, if the function f is bounded then the
sequence s, may be chosen such that it converges to f uniformly.

PROOF. Fix n and for every 1 < k < n2" let

k—1 k
Ank = {:1:: N < f(z) < 2_”}

Then A, j € X because the function f is measurable. Let s,, be defined

-1
Sp(x) = ETR forxe Ang, sn(x)=n for f(x)>n.

Simple functions s,, defined in this way are measurable and non-nega-

tive. If z € A, for some k then s,(z) = %, while

k-1 2% — 1
5 O sen(®) = o

Sn+1 (1:) =

Le. sp(z) < spii1(z).

For a fixed x and n > f(x) we have f(z) = s,(z) = f(x) — 1/2",
which shows that lim,, s,,(x) = f(x). If f is bounded then for n > f[X]
we have 0 < f(z) — s, < 1/2" uniformly in x € X. O

5. Almost everywhere

THEOREM 5.1. An additive set function p on a ring R is countably
additive if and only if it is continuous from below, i.e. for every A e R
and a sequence A, € R such that A, T A, we have lim,, u(A,) = u(A).

PRroOF. First, let p be countably additive. For an increasing se-
quence of sets A, T Alet By = A; and B,, = A,\A,,_1 for n > 1. Then
A =, By, and B, are pairwise disjoint. Thus

p(A) = u( LO_OJ Bn) = i 1(Bn)

n=1 n=1

= lim » p(By) = lim u(Ay).
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Now suppose u is continuous from below and consider pairwise dis-
joint A, and A = | J, A, € R. Let Sy = |J\_; A,. Then Sy 1 A and

we have

p(A) = lim p(Sy) = lim (p(A) + ...+ p(An)) = D p(An),

i.e. the countable additivity. U

THEOREM 5.2. For an additive set function ju on a ring R, which
only attains finite values, the following conditions are equivalent (below
always A,, A€ R)

(1) w is countably additive;
(2) w is continuous from above, i.e. lim, pu(A,) = u(A) if A, | A;
(3) w is continuous from above on the set &, i.e. lim, pu(A,) =0

if An | &

ProoOF. (1) = (2) Let B,, = A;\A,; then B,, 1 (A41\A) thus because
of the previous theorem

lim(AN\A,) = lim p(By) = p(A\A) = p(Ar) — p(A),

which implies lim,, pu(A4,) = p(A).

(2) = (3) is obvious; we just take A = (.

(3) = (1) Consider pairwise disjoint sets 4,, and A = | J_; A,. Let
S, = Uivﬂ A,. Then S, 1 A and

p(A) = p(Ar) + o+ p(An) + p(A\S,).

Because lim,, u(A\S,) = 0, this implies that the series converges to

p(A). O

DEFINITION 5.3. For a fixed measure space (X, X, 1) and measur-
able functions f,g: X — R we say that f = g u-almost everywhere
if

p({z: fz) # g(2)}) = 0.

Being equal p-almost everywhere is an equivalence relation. We often
write a.e. instead of almost everwhere.

EXAMPLE 5.4. Identifying functions which are equal almost every-
where has to be done with caution. We have 1g = 0 A-almost every-
where, but 1g is not continuous at any point, while 0 is. Moreover,
1p # 0 d,,-almost everywhere, where d,, is the Dirac measure, when

.1’06@.

DEFINITION 5.5. A sequence of measurable functions f, : X — R

converges j — almosteverywhere to a function f if there exists a set
E € ¥ such that u(F) = 0 and lim,, f,(x) = f(z) for every z € X\E.

EXAMPLE 5.6. Let X = [0,1] and f,(z) = 2™ Then f, — 0
A-almost everywhere, but f, — 1 d;-almost everywhere.
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THEOREM 5.7. For every A-measurable function f there exists a
Borel function g such that f = g A-almost everywhere.

We already know that every measurable function is a pointwise
limit of a sequence of simple functions and every bounded measurable
function is a uniform limit of simple functions.

The sequence f, : [0,1] — R, f,(x) = 2" converges to 0 pointwise,
but does not converge uniformly. Notice, however, that for every e > 0,
the sequence f,, does converge uniformly to 0 on the interval [0, 1—¢]. It
can be said that removing a small set improves convergence properties
of the sequence.

THEOREM 5.8 (Egorov). If (X, X, u) is a finite measure space and
fn + X — R is a sequence of measurable functions converging almost
everywhere to f, then for every ¢ > 0 there exists A € ¥ such that
w(A) < e and f, converges uniformly to f on the set X\A.

PROOF. Assume that f(x) = lim,f,(z) for every z € X. In the
general case, we can simply remove the “offending” set of measure zero.
For every m,n € N consider sets

n) = [z |fu(z) - f(z)| < 1/m}.

Then for every m we have E(m,1) € E(m,2) < ... and

UE(m,n) = X,

which follows from the fact that fi(z) — f(x), which means that for
every x there exists k such that |fx(z) — f(z)| < 1/m. Let us fix £ > 0.
Because E(m,n) 1 X, we have X\E(m,n) | & and because a finite
measure is continuous from above on the empty set, for every m there
exists n,, such that

p(X\E(m,ny,)) <e/2™.
Then by putting
A= U (X E(m,ny)),

we obtain

ZuXEmnm 28/27"—
Moreover, |f,(z) — f(z)| < 1/m for n > n,, and = ¢ A, which implies
uniform convergence of f,, on X\A. O

REMARK 5.9. The assumption u(X) < oo in the Egorov theorem
is important. The sequence f,(x) = x/n on the real line converges
pointwise to 0, but it is not uniformly convergent on any unbounded
subset of the line.
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The Egorov theorem spurs the following definition.

DEFINITION 5.10. We say that a sequence of measurable functions
is almost uniformly convergent if form every ¢ > 0 the sequence
fn converges uniformly on the complement of a set of measure smaller
than e.

6. Lebesgue integral

6.1. Integration of simple functions. Consider a fixed measure
space (X,%, ). Our goal is to define the integral, i.e. a linear oper-
ator assiging numerical values to functions, which, for a non-negative
function, measures the “area under the graph”.

Because of this, it is clear how the integral should be defnied for
simple functions.

DEFINITION 6.1. If f =}, _\a,ly, for A, € 3 then we define

| rau= % antan,

n<N

if only the expression on the right-hand side is meaningful (including
+o0). We say that the function f is integrable if SX fdp has a finite
value.

REMARK 6.2. For the symbols o0 and —o0, we assume x + o0 = o0,
x—0 = —w forx e R as well as 0-00 = 0-(—00) = 0. Ezpression
o0 — o0 has no numerical sense nor value.

REMARK 6.3. Let f = 2191 + cl3,,0;. Then
2, forc=20
de)\: 0w, forc>0
R

—oo  forc < 0.

For the function g = L_w0) — L[« the expression SRgd)\ has no
numerical sense.

LEMMA 6.4. The integral of a simple function is well-defined, i.e.
if f= anN anla, = stK bk]]‘Bk then

n<N k<K

Apart from the integral over the entire space X, we may consider
the integral over any set A € 3, which we simply define by

Lfdu=Lf-llAdu-

THEOREM 6.5. For a simple measurable function h and simple in-
tegrable functions f and g we have the following
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(1) §x(af +bg)du=afy fdu+bSy gdu;

(2) if h = 0 almost everywhere then §, hdp = 0;

(3) if f < g almost everywhere then § fdu < SX gdu;

(4) [§x(f +9)du| < §x [f1du+§x lgl dp;

(5) if a < f < b almost everywhere then ap(X) < § fdu <
bu(X);

(6) for A, Be X, if AnB = then§, . fdu=75,fdu+§, fdu.

6.2. Integration of measurables functions. We still assume
we work in a fixed, o-finte measure space (X, 3, i), and all functions
we discuss are assumed to be Y-measurable.

First we define the integral of a measurable non-negative function
f X — R. Notice that if s is a non-negative simple function such
that 0 < s < fand s = >, _ya,la,, where A, are pairwise disjoint
and a, = 0 then the condition means that, geometrically speaking, the
rectangles A, x [0, a,] fit under the graph of the function f and hence
we should have {, fdu > §, sdu (see Figure 1).

FIGURE 1. Riemann’s (Darboux’s) idea for approximat-
ing the integral (left) compared with Lebesgue’s (right).

DEFINITION 6.6. For a non-negative measurable function f we de-
fine

J fd,uzsup{J sd,u:sissimpleand0<5<f},
X X

The function f is called integrable, if the integral SX fdu is finite.

Notice that in fact the integral of a non-negative function f may
be defined as the supremum of value SX sdu, taken only for simple
integrable functions. The following theorem often serves as a more
useful definition.

THEOREM 6.7. If f is a non-negative measurable function, and s, is
a sequence of simple functions, such that s < sy < ... andlim, s, = f
almost everywhere then

J fd,uzlimf Sp dp.
X noJx
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PROOF. Because the sequence of integrals SX Sp djt is non-decre-
asing the limit lim,, § « Sn dp, proper or improper, always exists. Thanks
to the definition of the integral we have the inequality

J fd,u?limf Sp dp.
X noJx

Consider a simple function g = >} _\ a,1a, where A, are pairwise
disjoint sets of finite measure and which satisfies 0 < g < f. Then
Xo = U, <N A, has finite measure. Let M = max,a, (the values
1(Xo) and M are fixed). It follows from the Egorov theorem that s,
converges to f almost uniformly on the set X,. For a fixed € > 0 there
exists A € Xy such that u(A) < e/M and the covergence on Xy\A is
uniform. This means that for large n we have the inequality

g(x) — sp(x) < f(2) — su() <e/u(Xy), for xe Xo\A

and hence

Jgdu=f gdu=f gdu+fgdu
X Xo Xo\A A
< f (sn +&/1(Xo)) dp + Mp(A) < J Spdi+¢e+¢,
Xo\A XO

which proves that lim, §, s, du > §, gdp.
Suppose that we can find a simple function ¢ = al 4 such that
0<g< fand u(A) = w0. Then § fdu = 0. On the other hand, we

may consider By = U;V:l A n X, where X = X, and p(X,) < .
Thanks to the result of the previous paragraph, we know that

limf Sp dp = lim Spdu = J gdp = ap(By).
noJx " JBn By

But limy_,o u(By) = u(A) = o, hence lim,, SX Sp = OO
This allows us to conclude that

limf snd,u>sup{f gdyu : g is simple and0<g<f}
noJx X

and lim, §, s, dp = § f dp. O

Finally, for a general measurable function we define the integral
with the help of the decomposition we described in Lemma 4.14.

DEFINITION 6.8. We say that a measurable function f: X — R is
integrable if {, |f|du < oo; in such case, the integral of f is defined by

Lfdu= Lﬁdu—fxf—du,

where f = f* — f~ and f* = max(f,0), f~ = —min(f,0).



6. LEBESGUE INTEGRAL 59

Notice that the function f is integrable if and only if the functions
f* and f~ are integrable. Of course, in case that {, f*du = o0 and
§x [ dp < oo it is natural to assume that §, fdu = oo etc. We
may also notice that for an integrable function f and A € ¥ we have
SAfd,u = SXf 14 dp.

Now we can easily extend the fundamental properties of the integral
to measurable functions.

THEOREM 6.9. For integrable functions f, g and a measurable h we
have the following

(1) §Sx(f+9)du =Sy fdu+ S gdu;

(2) if f < g then§, fdu < gdu;

(3) ifa < f<bthen au(X) < § fdu <bu(X);

(4) if h = 0 almost everywhere then §, hdp = 0;

(5) if S hdp = 0 and h = 0 almost everywhere then h = 0 almost
everywhere;

(6) |55 (f+9)dul < §x[fldp+ 5y 19l du;

(7) forA,Be X, if AnB = F then§, o fdu="7,fdu+§, fdpu.

REMARK 6.10. Property (3) is still valid even if either or both in-
tegrals only have numerical sense (they may be equal to +o0).

6.3. Limit theorems. One of the main advantages of the Lebes-
gue integral over the Riemann integral is the availability of limit the-
orems, which allow us to calculate or estimate integrals of possibly
complicated functions with mimimal effort.

THEOREM 6.11 (Monotone convergence theorem). If f, is a se-
quence of non-negative functions and fi < fo < ... almost everywhere
then the limit function f = lim, f, satisfies SX fdup = lim, SX fndu.

The proof is simply an adaptation of the proof of Theorem 6.7.
Notice that we do not assume functions f, to be integrable. The limit
function f is well defined almost everywhere if we allow it to attain
infinite values.

THEOREM 6.12 (Fatou Lemma). If f,, is a sequence of non-negative
functions then

J liminf f,, dp < lim inff fndp.
x " X

PrROOF. By denoting
gn = inf fk:a f = hminffn7

k>
we obtain g, < f,, 0 < g1 < ¢go < ... and lim, g, = f. Hence from the
monotone convergence theorem we get

fnmzf%waffm
X X X
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and then the result follows immediately. g

ExAMPLE 6.13. If f, = 1, ,41], then liminf, f, = 0, while gdy
SR fnd\ =1 for every n. This simple example shows that the Fatou
lemma indeed requires an inequality. It is also an easy way to remem-
ber, in which direction is the inequality pointing.

THEOREM 6.14 (Lebesgue dominated convergence theorem). Let
fn and g be such measurable functions that for every n the inequality
| ful < g is satisfied almost everywhere and §, gdp < co. If f = lim, f,
almost everywhere then

limJ |fo — fldp =0 and de,uzlimf fn dp.
moJx X moJx

PrOOF. Let h, = |f, — f| and h = 2g. Then h, — 0 almost
everywhere and 0 < h,, < h. Thus by applying the Fatou lemma to the
sequence h — h,,, we obtain

J hd,uzj liminf(h — h,) dp < liminff (h— hy,)du
X x " X

n

:J hd,u—limsupf hy, dp.
X n X

This gives us limsup, { h, du = 0, because {, hdy < . Thus we
have shown that {, |f, — f|du — 0. Because

Lfndu—fxfdu < Lm ~ fldp,

the second relation follws from the first. O

REMARK 6.15. Let X = [0,1] and f, = nljo1/m. Then we have
fn — 0 X-almost everywhere, but S[o 1 fndX = 1. The assumption

of “dominated convergence”, appearing in (the very name of ) Theo-
rem 6.14 is therefore important.

COROLLARY 6.16. Let u(X) < oo and let functions f, be uni-
formly bounded. If f = lim, f, almost everywhere then Sdeu =

lim,, SX fndu.

THEOREM 6.17. If f is a measurable and non-negative function on
a measure space (X, %, u) then the set function v : 3 — [0,0] given
for every Ae ¥ by v(A) = §, fdu is a measure on X.

PROOF. By the properties of the integral, we know that v is an
additive set function on 3. If A, 1 A for some sets A,, A € ¥ then
1,4, is a non-decreasing sequence of functions converging to 14, while
fls, — flu. By the monotone convergence theorem we thus have

v(A) = JAfd,u = JX fladp = hranJX flya, dp = lignl/(An)
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Hence v is continuous from below and thus countably additive (it is a
measure). O

7. LP spaces

DEFINITION 7.1. We say that a sequence of measurable functions
fn : X — R converges in measure to a function f if for every ¢ > 0 we
have

lim (< [fule) — f(@)] = }) = 0.
In such case we denote f, & f.

PROPOSITION 7.2. A sequence which converges almost uniformly,
converges in measure.

PRroOOF. If functions f, converge to f almost uniformly, then for
every € > 0 there exists a set A such that pu(A) < e and | f,(x)— f(x)] <
e for large enough n and all x ¢ A. Thus {z : |f.(x) — f(z)| =} € A

and p({z : [fu(z) — f(z)] = e}) < p(A) <e. O
REMARK 7.3. Let f, : [0,1] — R denote the sequence
Lo,y Ljo,1/21s Lpuj21yy Ljoyap, Lpijanse)s - - -
We can check that f, converges to 0 in Lebesque measure, but

liminf f,(x) =0, limsup f,(z) =1 for every x € [0,1],

so the sequence doesn’t converge almost uniformly.

LEMMA 7.4 (Chebyshev inequality). If f is a measurable function
then for every e > 0

ceultes @) =) < | 1fldu
PROOF. Let A, =
SX‘ﬂdU) SAS |fldp =

THEOREM 7.5 (Riesz). Let (X,3, u) be a finite measure space and
let f, : X — R be a sequence of measurable functions satisfying the
Cauchy condition in measure, i.e.

Jim (e s |f(@) = fal@)] 2 2}) = 0

{x : |f(z)] = €}. Then |f|1s. = €1, and
ep(Ae) O

for every e > 0. Then

e there exists a subsequence n(k) € N, such that the sequence of
functions fnu) s convergent almost everywhere;
e the sequence f, converges in measure to some function f.
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PRroOF. Notice that the Cauchy condition we assumed implies that
for every k there exists n(k), such that for any n,m > n(k) we have

p({a« | falz) = fu(@)] = 1/2°}) < 1/2,
and in addition we can take n(1) <n(2) <.... Let
Ey = {x : ‘fn(k)(if) - fn(kJrl)(:B)’ = 1/2k}, A = U E,.
n=k

Then p(Ay) < 1/2%7! and hence the set A = (), Ay has measure zero.
If x ¢ A then for every k such that x ¢ Ay and every ¢ > k we have

It follows from the triangle inequality that for j > ¢ > k we have

|fn(z) - fn(])| < 1/2Z_1'

This means that for x ¢ A the numerical sequence f,;(x) satisfies the
Cauchy condition and hence converges to a number, which we (unsur-
prisingly) denote as f(z). In this way we obtain that f, ) converges
almost everywhere to the fuction f and this proves the first part of the
theorem.

In order to verify the second part it suffices to notice that f, = f,
which follows from

o1 1fule) — f(@)] > €}
< (o 1) = faw (@) = 5} o {o < fuw (@) = £@)] > 5}

and the Cauchy condition for the convergence in measure. U
b /
a

FIGURE 2. Young inequality: the rectangle [0, a] x [0, ]
is covered by the blue and red areas, but there is an
excess of blue, hence the inequality.

LEMMA 7.6 (Young inequality for products). For any positive num-
bers a,b,p,q, if 1/p+1/q =1 then
ab? bl
ab < — + —.
p q
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PRrROOF. Consider the function f(t) = tP~! on the interval [0, a]. We
assume p > 1 therefore f has the inverse function g(s) = s/®~Y. Note
that the areas under the graphs of f : [0,a] — R and ¢ : [0,0] — R
cover the rectangle [0, a] x [0, b] (see Figure 2).

Thus
a b p|® q|b P a
ab < f 1 at +J SU/=1) g — o8 _ae b_’
0 0 Pl q 1o p q
because 1 + 1/(p—1) =p/(p—1) =q. 0

DEFINITION 7.7. For every measurable function (integrable or not)
f:X — R and p > 1 the expression

1/p
£l = ( L|f|”du>

is called the p-th integral norm of the function f.

THEOREM 7.8 (Holder inequality). For every pair of functions f,g
and numbers p,q > 0 such that 1/p + 1/q = 1 we have the following
inequality

Ifgl = L - gldu < 11, - gl

PROOF. The inequality is obviously true if one of the norms on the
right-hand side is infinite. Otherwise, for a given x € X we substitute

U@, le@)
i Tl

into the inequality in the previous lemma in order to obtain (for every
reX)

[f)-g(@)] 1 [f@)F 1 lg(=)]

S +_' .
Ifle-lgle 2 If1l5 a  lgld

By integrating the last inequality we get

[ 1ratauls-tola < 19+ 10 -1 0
X

THEOREM 7.9 (Minkowski inequality). For every pair of functions
f,g and a number p = 1, we have the following inequality

If +glp < 1Flp + gl

PROOF. The inequality is satisfied for p = 1. For p > 1 we may
find a number ¢ satisfying the condition 1/p + 1/¢ = 1. Notice that
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(p—1)g = p and p/q = p — 1. We use the Holder inequality to get

If + gl =f 4 gPdu
X

< f \fl-1f +gP! du+J 9| -1 f + 9P dp
X X

2 1
<o [ 17 ot man) " gl [ 17+ ol )
X X

1

= (|f||p+||9p)'<L \f+g\pdu>q = (Iflo+lglp) 1 f+al/e.

We now divide both sides by | f + g|%/? and we get result.
Note that in order for this proof to be entirely correct, we need to
verify that | |, g, < = implies | £ + gl < . O

7.1. Banach spaces. Recall that a norm on a linear space X is a
function | - | : X — C (or X — R) such that
(1) |x| = 0 for every z € R? and |z| = 0 if and only if z = 0;
(2) (triangle inequality) |z + y|| < ||z| + |y| for every z,y € X;
(3) (homogeneity) |az| = |a||z| for every x € X and every a € C
(or a € R).

DEFINITION 7.10. A normed space (X, |-|) is called a Banach space
if the metric induced by the norm is complete, i.e. for every sequence
x, € X satisfying the Cauchy condition

lim |z, — x| =0,
n,k—00

there exists € X such that |z, —z| — 0 (z is the limit of the sequece).

The p-th norm function || - |, is in fact a norm: Minkowski inequa-
lity is the triangle inequality for | - ||, and homogeneity follows directly
from the properties of the integral.

The only problem is with the first axiom, since ||f||, = 0 is only
equivalent to saying that f = 0 almost everywhere.

DEFINITION 7.11. For a given measure space (X, %, ), by LP(p)
we denote the space of all measurable functions f : X — R for which
|fll, < oo. Elements of LP(x) which are equal almost everywhere are
identified as classes of abstraction.

In this way LP(u) equipped with the p-th integral norm becomes a
normed space, but formally speaking it consists not of functions, but
classes of abstaction (of functions). Most often. however, we may still
refer to the elements of LP(u) as functions without any confusion.

It is nonetheless important not to forget about this distinction. For
example, if f is a measurable function and [ f] is its class of abstraction
such that f ~ [f] € LP()\), then for a chosen point = € R the value
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f(z) is “undefined”, since a single point has Lebesgue measure zero.
In fact, [f] contains functions attaining all possible values at x.

Notice that if f, — f almost everywhere, then the same is true
for every representative of the respective classes of abstraction, while
it is not true for the actual pointwise convergence (everywhere without
“almost”).

In different contexts, LP(u) may also be denoted by LP(X, 3, i) or
as LP(X). For example, we usually write LP(R) or LP(T) to refer to
spaces defined using the Lebesgue measure on R or T.

THEOREM 7.12. Spaces LP(p) with norms | - |, are Banach spaces
forp=>=1.

PROOF. Consider p = 1 and let f, € L'(u) be a Cauchy sequence
in the norm | - [|;, that is

i [ 1=l =o.
X

n,k— o0

Then for € > 0 it follows from the Chebyshev inequality that
f [fo = feldp=e-p <{x (@) = fa(@)] = g}>,
b's

which means that f,, is a Cauchy sequence in measure.

It follows from the Riesz theorem that there exists an increasing
sequence ny € N and a function f such that f,, — f almost everywhere.
On the other hand, the Fatou lemma gives us

J fldp < liminff | foi | dp < 00,
X k X

because the Cauchy condition implies that the sequence of integrals
$x [ful dpv is bounded.
Using the Fatou lemma once again we obtain

J \f—fnk]d,u—f lim'inf|fnj — fol At
X X J

< lim.inff | fn, = [l dp < e,
J X

for k large enough. Finally, because

[0 s [ 15 puldus [ 15

we obtain that f is in fact the limit of the sequence f, in the space
L'(u). The proof for p > 1 is a rather mechanical modification of this
argument. O

REMARK 7.13. Consider measure spaces (X,%,p) and (Y,0,v).
We may then define

Y®0=0({AxB: AeX, Be0}),
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which is a o-field of subsets of X x Y. Similarly, we may define
(h®V)(A x B) = u(A) -v(B),
and show that p ® v extends to a measure on (X x Y, X ® O). It can
also be shown that
Bor(R x R) = Bor(R) ® Bor(R).

This allows us to easily consider spaces of functions of complex
values. For a measure space (X, %, ) and a function f: X — C we
say that f is measurable if f~'[B] € X for every Borel set B < C. Here
C may be identified with R x R and so Bor(C) = Bor(R) ® Bor(R).

We may express such a function as f = Re f + i¢Im f, where Re f
and Im f are real-valued functions. Then f is measurable if and only
if Re f and Im f are measurable.

Hence if f is measurable then its modulus | f| = y/(Re f)% + (Im f)?
s measurable as well. The function f is integrable when SX |f|dp < oo,

while
J fd,uzf Refdu—i—z'f Im f du
X X X

defines the integral. The basic properties of the integral remain valid.




