FOURIER ANALYSIS

PROBLEM LIST 1

Problem 1. The modulus (magnitude) of a complex number is defined as $|x+i y|=$ $\sqrt{x^{2}+y^{2}}$ Show that $\left|e^{z}\right| \leqslant e^{|z|}$.
Problem 2. Using definitions of $e^{z}, \sin (z)$ and $\cos (z)$ verify that $e^{x+i y}=e^{x}(i \sin (y)+$ $\cos (y))$ for every $x, y \in \mathbb{R}$ and $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$.
Problem 3. Using the Euler formulas prove the following identities

$$
\begin{aligned}
& 2 \sin \psi \sin \theta=\cos (\psi-\theta)-\cos (\psi+\theta), \\
& 2 \sin \psi \cos \theta=\sin (\psi-\theta)+\sin (\psi+\theta) \\
& 2 \cos \psi \cos \theta=\cos (\psi-\theta)+\cos (\psi+\theta)
\end{aligned}
$$

Problem 4. Show that if a function f is continuous and periodic, and is not constant, then it has a basic period.
Problem 5. Show that the following function

$$
f(x)= \begin{cases}1 & \text { when } x \in \mathbb{Q} \\ 0 & \text { when } x \notin \mathbb{Q}\end{cases}
$$

does not have a basic period.
Definition. The following infinite set of functions

$$
\{\sin n x, \cos n x\}_{n \in \mathbb{N}_{0}}=\{1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots\}
$$

is called the trigonometric system.
Recall the two formulas describing trigonometric polynomials

$$
\begin{equation*}
W(x)=a_{0}+\sum_{k=1}^{N}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
W(x)=\sum_{k=-N}^{N} c_{k} e^{i k x}, \quad\left\{c_{k}\right\} \subset \mathbb{C} . \tag{2}
\end{equation*}
$$

Problem 6. Prove that the trigonometric system is an orthogonal system and that $\left\{\frac{1}{\sqrt{2 \pi}} e^{i n x}\right\}_{n \in \mathbb{Z}}$ is orthonormal.
Problem 7. Show that expressions (1) and (2) are equivalent, i.e. for every pair of sets $\left\{a_{k}\right\},\left\{b_{k}\right\} \subset \mathbb{C}$ there exists a set $\left\{c_{k}\right\} \subset \mathbb{C}$ such that they describe the same function W, and vice-versa. How about only real coefficients?
Problem 8. Using Problem 6, write a formula for coefficients a_{n} and b_{n} of a trigonometric polynomial in the form (1).
Problem 9. How to adjust the definition of trigonometric polynomials if instead of $2 \pi-$ periodic functions we are interested in 1 -periodic functions? How about an arbitrary period?

