FOURIER ANALYSIS

PROBLEM LIST 1

Problem 1. The modulus (magnitude) of a complex number is defined as $|x + iy| = \sqrt{x^2 + y^2}$ Show that $|e^z| \leq e^{|z|}$.

Problem 2. Using definitions of e^z , $\sin(z)$ and $\cos(z)$ verify that $e^{x+iy} = e^x(i\sin(y) + \cos(y))$ for every $x, y \in \mathbb{R}$ and $|e^z| = e^{\operatorname{Re}(z)}$.

Problem 3. Using the Euler formulas prove the following identities

 $2\sin\psi\sin\theta = \cos(\psi - \theta) - \cos(\psi + \theta),$ $2\sin\psi\cos\theta = \sin(\psi - \theta) + \sin(\psi + \theta),$ $2\cos\psi\cos\theta = \cos(\psi - \theta) + \cos(\psi + \theta).$

Problem 4. Show that if a function f is continuous and periodic, and is not constant, then it has a basic period.

Problem 5. Show that the following function

 $f(x) = \begin{cases} 1 & \text{when } x \in \mathbb{Q}, \\ 0 & \text{when } x \notin \mathbb{Q} \end{cases}$

does not have a basic period.

Definition. The following infinite set of functions

 $\{\sin nx, \cos nx\}_{n\in\mathbb{N}_0} = \{1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots\}$

is called the trigonometric system.

Recall the two formulas describing trigonometric polynomials

(1)
$$W(x) = a_0 + \sum_{k=1}^{N} \left(a_k \cos(kx) + b_k \sin(kx) \right),$$

(2)
$$W(x) = \sum_{k=-N}^{N} c_k e^{ikx}, \quad \{c_k\} \subset \mathbb{C}.$$

Problem 6. Prove that the trigonometric system is an orthogonal system and that $\left\{\frac{1}{\sqrt{2\pi}}e^{inx}\right\}_{n\in\mathbb{Z}}$ is orthonormal.

Problem 7. Show that expressions (1) and (2) are equivalent, i.e. for every pair of sets $\{a_k\}, \{b_k\} \subset \mathbb{C}$ there exists a set $\{c_k\} \subset \mathbb{C}$ such that they describe the same function W, and vice-versa. How about only real coefficients?

Problem 8. Using Problem 6, write a formula for coefficients a_n and b_n of a trigonometric polynomial in the form (1).

Problem 9. How to adjust the definition of trigonometric polynomials if instead of 2π -periodic functions we are interested in 1-periodic functions? How about an arbitrary period?