FOURIER ANALYSIS

PROBLEM LIST 2

Problem 1. Construct a sequence of polynomials which approximates $y \mapsto |y|$. Hint: Write |y| as $\sqrt{1 + (y^2 - 1)}$ and consider its Taylor expansion.

Problem 2. Let $\mathcal{A}_+ = \lim\{e^{inx} : n \ge 0\} \subset C(\mathbb{T}; \mathbb{C})$. Show that \mathcal{A}_+ is an algebra which separates points and does not vanish in \mathbb{T} , but it is not dense in $C(\mathbb{T})$.

Problem 3. Consider $C_{\mathbb{R}}([0,1] \times [0,1])$ and

 $\mathcal{A} = \lim_{\mathbb{R}} \{ f(x)g(y) : f, g \in C_{\mathbb{R}}([0,1]) \}$

(the family \mathcal{A} consist of (real) linear combinations of functions of separated variables). Show that \mathcal{A} is dense in $C_{\mathbb{R}}([0,1] \times [0,1])$.

Problem 4. Suppose that \mathcal{A} is an algebra in $C_{\mathbb{R}}(K)$ which separates points. Prove that one of the following statements is always true:

- (1) $\operatorname{cl} \mathcal{A} = C_{\mathbb{R}}(K).$
- (2) There exists a point $x_0 \in K$ such that $\mathcal{A} = \{f \in C_{\mathbb{R}}(K) : f(x_0) = 0\}.$

Recall	the two formulas describing trigonometric polynomials
(1)	$W(x) = a_0 + \sum_{k=1}^{N} (a_k \cos(kx) + b_k \sin(kx)),$
(2)	$W(x) = \sum_{k=-N}^{N} c_k e^{ikx}, \qquad \{c_k\} \subset \mathbb{C}.$

Problem 5. Show that functions of the form (1), where a_k and b_k are assumed to be real, constitute an algebra.

Problem 6. Show that functions of the form (2) constitute a complex self-adjoint algebra.

Problem 7. Show that complex trigonometric polynomials are dense in the space of continuous 2π -periodic complex functions, i.e. $C(\mathbb{T})$. Similarly, show that functions given by formula (1), where $a_k, b_k \in \mathbb{R}$ are dense in $C_{\mathbb{R}}(\mathbb{T})$