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Problem 1 Let f be the 2π-periodic function defined by f(x) = x(x2 − π2)
in [−π, π].

a) Compute the n-Fourier coefficient of f , for all n ∈ Z.

b) Prove that the Fourier series of f converges uniformly to f .

c) Prove that ζ(6) = π6

945 , where ζ denotes the Riemann zeta-function.

Problem 2

a) Let f(x) = (x2 + 2x+ 2)e−πx2 . Compute the Fourier transform of f .

b) Let g : R→ R be the function such that

eπt
2
g(t) =

∫ ∞
−∞

(x2 + 2x+ 2)e−2πx(x−t) dx,

for all t ∈ R. Compute the Fourier transform of g.

Problem 3 Let m,n ≥ 0 be integers. Suppose that for any function G ∈
C∞(R) with compact support the following inequality holds:

sup
ξ∈R

∣∣∣ξmĜ(ξ)
∣∣∣ ≤ ∫ ∞

−∞
|G(n)(x)| dx.

Prove that m = n. (The function G(n) denotes the n-th derivative of G)

Problem 4 Let F be the family of entire functions f : C→ C of exponential
type 2π such that f ∈M(R), f(x) ≥ 0 for all x ∈ R and f(0) = 1.

a) Prove that for any f ∈ F we have∫ ∞
−∞

f(x) dx ≥ 1.

b) Give an example of a function f ∈ F such that∫ ∞
−∞

f(x) dx = 1. (1)

c) Prove that there exists a unique function f ∈ F such that (1) holds.
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Problem 5 Does there exist a 2π-periodic integrable function f such that
0 ≤ f(x) ≤ π for all x ∈ [−π, π], and

f̂(n) = (−1)n√
1 + n2

,

for all n ∈ Z?

————————————————————————————————————

• For n ∈ Z, the n-Fourier coefficient of f is defined by:

f̂(n) = 1
2π

∫ π

−π
f(x)e−ixn dx.

• M(R) denotes the family of moderate decrease functions.
• The Fourier transform of f is defined by:

f̂(ξ) =
∫ ∞
−∞

f(x)e−2πixξ dx,

where ξ ∈ R.
• C∞(R) denotes the class of infinitely differentiable functions.


