PROBLEM SET 3

- (27) Show that the examples of inner product spaces, \mathbb{R}^d , and \mathbb{C}^d are Hilbert spaces.
- (28) Prove that the vector space $\ell^2(\mathbb{Z})$ is a Hilbert space.
- (29) Construct a sequence of integrable functions $\{f_k\}_{k\geq 1}$ defined on $[0, 2\pi]$ such that

$$\lim_{k \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |f_k(\theta)|^2 \,\mathrm{d}\theta = 0,$$

but $\lim_{k\to\infty}$ fails to exist for any $\theta \in [0, 2\pi]$.

(30) We recall that the vector space \mathcal{R} of integrable functions, with its inner product and norm

$$||f|| = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 \, \mathrm{d}x\right)^{1/2}.$$

- (a) Show that there exist a non-countable family of non-zero integrable functions f for which ||f|| = 0.
- (b) Show that if $f \in \mathcal{R}$ with ||f|| = 0, then f(x) = 0 whenever f is continuous at x.
- (c) Conversely, show that if $f \in \mathcal{R}$ vanishes at all of its points of continuity, then ||f|| = 0.
- (31) Use the function $f: [-\pi, \pi] \to \mathbb{R}$ defined by $f(\theta) = |\theta|$, to find the value of the sums

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^4}$$

(32) Use the 2π -periodic odd function defined on $[0,\pi]$ by $f(\theta) = \theta(\pi - \theta)$ to compute the values of

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^6} \text{ and } \sum_{n=1}^{\infty} \frac{1}{n^6}$$

(33) Let $\alpha \notin \mathbb{Z}$. Consider the function $g: [0, 2\pi] \to \mathbb{C}$ defined by

$$g(x) = \frac{\pi}{\sin \pi \alpha} e^{i(\pi - x)\alpha}$$

- (a) Compute the Fourier coefficients of g.
- (b) Prove the identity

$$\sum_{n\in\mathbb{Z}}\frac{1}{(n+\alpha)^2} = \frac{\pi^2}{(\sin\pi\alpha)^2}.$$

0

(34) A classical result in the theory of integration states that: let $f, g : [a, b] \to \mathbb{R}$ be two Riemann integral functions such that f(x) = g(x) outside of a set of measure zero. Then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} g(x) \, \mathrm{d}x.$$

Prove the above result, assuming that U is a finite set.

- (35) Riemann-Lebesgue Lemma V3: Let $f : [0, 2\pi] \to \mathbb{C}$ be an integrable function, such that it does not necessarily satisfies $f(0) = f(2\pi)$.
 - (a) Prove that

$$\lim_{n \to \infty} f(n) = 0.$$

(b) Consider the subinterval $[a, b] \subset [0, 2\pi]$. Prove that

$$\lim_{n \to \infty} \int_a^b f(x) \cos(nx) dx = 0 \quad \text{and} \quad \lim_{n \to \infty} \int_a^b f(x) \sin(nx) dx = 0.$$

In particular, prove that

$$\lim_{n \to \infty} \int_a^b f(x) \sin((n+1/2)x) \mathrm{d}x = 0.$$

- (36) Dini's Test: Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic and integrable function.
 - (a) Let D_N be the Dirichlet kernel, and $S_N(f)$ the partial sums of the Fourier series of f. Show that, for $\theta \in \mathbb{R}$,

$$S_N(f)(\theta) - f(\theta) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left(f(\theta + u) + f(\theta - u) - 2f(\theta) \right) D_N(u) \, \mathrm{d}u.$$

(b) Let $\theta \in \mathbb{R}$, and suppose that for some $0 < \eta \leq \pi$, we have

$$\lim_{N \to \infty} \frac{1}{4\pi} \int_{-\eta}^{\eta} \left(f(\theta + u) + f(\theta - u) - 2f(\theta) \right) D_N(u) \, \mathrm{d}u = 0,$$

Prove that $S_N(f)(\theta) \to f(\theta)$, as $N \to \infty$. (Hint: Use the Problem (35.b)).

(c) Prove Dini's Test: Let $\theta \in \mathbb{R}$, and assume that there is $\delta > 0$ such that the function

$$g(u) = \left| \frac{f(\theta + u) + f(\theta - u) - 2f(\theta)}{u} \right|$$

is an integrable function on the interval $[-\delta, \delta] \subset [-\pi, \pi]$. Prove that $S_N(f)(\theta) \to f(\theta)$, as $N \to \infty$.

(37) Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic function, integrable on $[-\pi, \pi]$. Suppose that f satisfies a Hölder condition of order α , for some $0 < \alpha \leq 1$, i.e., for some C > 0 we have

$$|f(x+h) - f(x)| \le C|h|^{\alpha}$$

for all $x, h \in \mathbb{R}$. Prove that

$$\widehat{f}(n) = O\left(\frac{1}{|n|^{\alpha}}\right).$$

Prove that the above result cannot be improved by showing the following statements: (a) Let $0 < \alpha < 1$. Prove that the function

$$f(x) = \sum_{k=0}^{\infty} 2^{-k\alpha} e^{i2^k x}$$

is a 2π -periodic function, integrable on $[-\pi,\pi]$ and satisfies the Hölder condition of order α . (b) For the above function, show that $\hat{f}(n) = n^{-\alpha}$ whenever $n = 2^k$. (38) Let f be a 2π -periodic function which satisfies a Lipschitz condition with constant K; that is,

$$|f(x) - f(y)| \le K|x - y|,$$

for $x, y \in \mathbb{R}$. This is simply the Hölder condition with $\alpha = 1$. We want to prove that the Fourier series of f converges absolutely and uniformly, following the next outline:

(a) For every positive h we define $g_h(x) = f(x+h) - f(x-h)$. Prove that

$$\frac{1}{2\pi} \int_0^{2\pi} |g_h(x)|^2 \, \mathrm{d}x = \sum_{n=-\infty}^\infty 4|\sin(nh)|^2 |\widehat{f}(n)|^2,$$

and show that

$$\sum_{n=-\infty}^{\infty} |\sin(nh)|^2 |\hat{f}(n)|^2 \le K^2 h^2.$$

(b) Let p be a positive integer. By choosing $h = \pi/2^{p+1}$, show that

$$\sum_{2^{p-1} < |n| \le 2^p} \left| \widehat{f}(n) \right|^2 \le \frac{K^2 \pi^2}{2^{2p+1}}$$

- (c) Estimate $\sum_{2^{p-1} < |n| \le 2^p} |\widehat{f}(n)|$, and conclude that the Fourier series of f converges absolutely, hence uniformly. (Hint: Use the Cauchy-Schwarz inequality to estimate the sum.)
- (d) In fact, modify the argument slightly to prove Bernstein's theorem: If f satisfies a Hölder condition of order $\alpha > 1/2$, then the Fourier series converges absolutely.
- (39) Prove or disprove:
 - (a) For any enumeration of the rational numbers $\{\xi_n\}_{n\geq 1}$ in [0,1) we have that $\{\xi_n\}_{n\geq 1}$ is equidistributed.
 - (b) There is an enumeration of the rational numbers $\{\xi_n\}_{n\geq 1}$ in [0,1) such that $\{\xi_n\}_{n\geq 1}$ is equidistributed.
- (40) Let γ be an irrational number, and let $f : [0,1] \to \mathbb{C}$ be a periodic Riemann integrable function of period 1. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\gamma) = \int_0^1 f(x) \, \mathrm{d}x.$$

- (41) Weyl's criterion: Let $\{\xi_n\}_{n\geq 1}$ be a sequence of real numbers in [0, 1). The following propositions are equivalent:
 - (a) $\{\xi_n\}_{n\geq 1}$ is equidistributed.
 - (b) For all $k \in \mathbb{Z}, k \neq 0$ we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \xi_n} = 0.$$

(42) Let $\{\xi_n\}_{n\geq 1}$ be an equidistributed sequence of real numbers in [0,1) and $\{\alpha_n\}_{n\geq 1}$ be a sequence such that $\alpha_n \to 0$. Then, the sequence $\{(\xi_n + \alpha_n)\}_{n\geq 1}$ is equidistributed.¹

¹ The notation (ξ_n) means the fractional part of ξ_n .

(43) Show that, for any $a \neq 0$ and $0 < \sigma < 1$, the sequence $\{(an^{\sigma})\}_{n \geq 1}$ is equidistributed in [0, 1). (Hint: Prove that for any fixed $b \neq 0$ we have

$$\sum_{n=1}^{N} e^{2\pi i b n^{\sigma}} - \int_{1}^{N} e^{2\pi i b x^{\sigma}} \, \mathrm{d}x = O\left(\sum_{n=1}^{N} n^{-1+\sigma}\right)$$

for $N \ge 1$.)

- (44) Suppose that f is a periodic function on \mathbb{R} of period 1, and $\{\xi_n\}_{n\geq 1}$ is a sequence equidistributed in [0,1). Prove that:
 - (a) If f is continuous and satisfies $\int_0^1 f(x) dx = 0$, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x + \xi_n) = 0,$$

uniformly in x.

(b) If f is merely integrable on [0,1] and satisfies $\int_0^1 f(x) \, dx = 0$, then

$$\lim_{N \to \infty} \int_0^1 \left| \frac{1}{N} \sum_{n=1}^N f(x+\xi_n) \right|^2 \mathrm{d}x = 0.$$

Email address: carlos.a.c.chavez@ntnu.no