PROBLEM SET 4

Let $\mathcal{M}(\mathbb{R})$ be the family of moderate decrease functions. This means that $f \in \mathcal{M}(\mathbb{R})$ if and only if $f : \mathbb{R} \to \mathbb{C}$ is a continuous function, and there are constants $\delta > 0$, M > 0 and N > 0 such that

$$|f(x)| \le \frac{M}{|x|^{1+\delta}}$$

for $|x| \ge N$.

(45) Let $f : \mathbb{R} \to \mathbb{C}$ be a continuous function. Then, $f \in \mathcal{M}(\mathbb{R})$ if and only if there is a constant K > 0 such that

$$|f(x)| \le \frac{K}{1+|x|^{1+\delta}}$$

for all $x \in \mathbb{R}$.

(46) Let $\delta > 0$ be a real number. Then, for $f \in \mathcal{M}(\mathbb{R})$, we have

$$\delta \int_{-\infty}^{\infty} f(\delta x) \, \mathrm{d}x = \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$$

- (47) Let $f \in \mathcal{M}(\mathbb{R})$.
 - (a) Prove that \hat{f} is an uniformly continuous function on \mathbb{R} .
 - (b) Prove that $\hat{f}(\xi) \to 0$, when $\xi \to \pm \infty$ (Riemann-Lebesgue Lemma).
 - (c) Show that if $\hat{f}(\xi) = 0$ for all $\xi \in \mathbb{R}$, then f is identically 0.
- (48) Suppose that F(x, y) is a continuous function in the plane $(x, y) \in \mathbb{R}^2$. Assume there is A > 0 such that

$$|F(x,y)| \le \frac{A}{(1+|x|^{1+\delta})(1+|y|^{1+\delta})}$$

Define the functions

$$F_1(x) = \int_{-\infty}^{\infty} F(x, y) \,\mathrm{d}y, \quad \text{and} \quad F_2(y) = \int_{-\infty}^{\infty} F(x, y) \,\mathrm{d}x.$$

Therefore $F_1, F_2 \in \mathcal{M}(\mathbb{R})$ and

$$\int_{-\infty}^{\infty} F_1(x,y) \, \mathrm{d}x = \int_{-\infty}^{\infty} F_2(x,y) \, \mathrm{d}y$$

- (49) Prove the following statements:
 - (a) If $f \in \mathcal{S}(\mathbb{R})$ and $g \in \mathcal{S}(\mathbb{R})$, then $f * g \in \mathcal{S}(\mathbb{R})$.
 - (b) If $f \in \mathcal{M}(\mathbb{R})$ and $g \in \mathcal{M}(\mathbb{R})$, then $f * g \in \mathcal{M}(\mathbb{R})$.
- (50) Compute the Fourier transform of the function

$$g(x) = \begin{cases} 1 + \cos x, & \text{if } |x| \le \pi \\ 0, & \text{if } |x| > \pi. \end{cases}$$

1

(51) Define the function

$$f(x) = \begin{cases} 1 - |x|, & \text{if } |x| \le 1\\ 0, & \text{if } |x| > 1. \end{cases}$$

- (a) Compute the Fourier transform of f.
- (b) Determine the integral

$$\int_{-\infty}^{\infty} \left(\frac{\sin \pi\xi}{\pi\xi}\right)^4 d\xi.$$

(52) Let y > 0. Define the Poisson kernel as:

$$P_y(x) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$$

Prove the following identities:

(a) For all $x \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} e^{-2\pi|\xi|y} e^{2\pi i\xi x} d\xi = P_y(x).$$

(b) For all $x \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} P_y(x) e^{-2\pi i \xi x} d\xi = e^{-2\pi |\xi| y}.$$

(53) Prove that the set $\{P_y\}_{y>0}$ is a family of good kernels as $y \to 0$.

(54) Let a > 0. Compute the Fourier transform of the function

$$h_a(x) = \frac{a^2 - x^2}{(a^2 + x^2)^2}.$$

(55) Prove that if $f \in \mathcal{M}(\mathbb{R})$ and

$$\int_{-\infty}^{\infty} f(y)e^{-y^2}e^{2xy}\,dy = 0,$$

for all $x \in \mathbb{R}$, then f = 0.

- (56) The following exercise illustrates the principle that the decay of \hat{f} is related to the continuity properties of f.
 - (a) Suppose that $f \in \mathcal{M}(\mathbb{R})$ such that $\hat{f} \in \mathcal{M}(\mathbb{R})$. Prove that f satisfies a Hölder condition of order α , that is, that

$$|f(x+h) - f(x)| \le M|h|^{\alpha},$$

for some $0 < \alpha < 1$, M > 0 and $x, h \in \mathbb{R}$.

(b) Let f be a continuous function on \mathbb{R} which vanishes for $|x| \ge 1$, with f(0) = 0, and for $0 < |x| < \delta$,

$$f(x) = \frac{1}{\ln(1/|x|)},$$

for some $\delta > 0$. Prove that $\widehat{f} \notin \mathcal{M}(\mathbb{R})$.

(57) Bump functions. Examples of compactly supported functions in $\mathcal{S}(\mathbb{R})$ are very handy in many applications in analysis. Some examples are:

(a) Suppose a < b, and f is the function such that f(x) = 0 if $x \le a$ or $x \ge b$ and

$$f(x) = e^{-1/(x-a)}e^{-1/(b-x)}$$

if a < x < b. Show that f is indefinitely differentiable on \mathbb{R} .

- (b) Prove that there exists an indefinitely differentiable function F on \mathbb{R} such that F(x) = 0 if $x \leq a, F(x) = 1$ if $x \geq b$, and F is strictly increasing on [a, b].
- (c) Let $\delta > 0$ be so small such that $a + \delta < b \delta$. Show that there exists an indefinitely differentiable function g such that g is 0 if $x \le a$ or $x \ge b$, g is 1 on $[a + \delta, b \delta]$, and g is strictly monotonic on $[a, a + \delta]$ and $[b \delta, b]$.
- (58) Let $p, q \ge 1$ be real numbers, $\alpha, \beta, m, n \in \mathbb{Z}$ be positive numbers. Suppose that there is a constant C > 0 such that for any function $G \in C^{\infty}(\mathbb{R})$ with compact support, the following inequality holds

$$\left(\int_{-\infty}^{\infty} \left||\xi|^{\alpha} \frac{d^m \widehat{G}}{d\xi}(\xi)\right|^q d\xi\right)^{1/q} \le C \left(\int_{-\infty}^{\infty} \left||x|^{\beta} \frac{d^n G}{dx}(x)\right|^p dx\right)^{1/p}$$

Give the necessary relationship between p, q, α, β, m and n.

(Hint: Take a fixed function and its dilatations with $\delta > 0$. Taking $\delta \to 0$ and $\delta \to \infty$ one can obtain the desired relationship.)

 $Email \ address: \verb|carlos.a.c.chavez@ntnu.no||$