PROBLEM SET 6

- (70) Let $f \in \mathcal{M}(\mathbb{R})$ such that for all $\xi \in \mathbb{R}$ we have $|\hat{f}(\xi)| \leq Ae^{-2\pi a |\xi|}$, for some constants a, A > 0. Prove that f(x) is the restriction to \mathbb{R} of a function f(z) holomorphic in the strip $\{z \in \mathbb{C} : |\text{Im } z| < b\}$ for any 0 < b < a.
- (71) Let $f \in \mathcal{M}(\mathbb{R})$ such that $\widehat{f}(\xi) = O(e^{-2\pi a|\xi|})$, for some constants a > 0. Suppose that f(1/n) = 0 for all $n \in \mathbb{N}$. Prove that $f \equiv 0$.
- (72) Prove the following version of Phragmén Lindelöf Theorem: Suppose that F is a holomorphic function in the sector $S = \{z \in \mathbb{C} : -\pi/4 < \arg z < \pi/4\}$ that is continuous on the closure of S. Assume $|F(z)| \leq 1$ on the boundary of S, and that there are constants C, c > 0 such that for all z in S we have $|F(z)| \leq Ce^{c|z|}$. Then $|F(z)| \leq 1$ for all $z \in S$.
- (73) Let $f : \mathbb{R} \to \mathbb{C}$ be a function such that $f \in \mathcal{M}(\mathbb{R})$ and $\operatorname{supp} \widehat{f} \subset [-\frac{1}{2}, \frac{1}{2}]$. Suppose that f(n) = 0 for all $n \in \mathbb{Z} \setminus \{-1, 1\}$ and f(-1) + f(1) = 0.
 - (a) Prove that $\int_{-\infty}^{\infty} f(x) dx = 0.$
 - (b) Prove that, if f(1) = i, then

$$f(x) = -\frac{2i\sin(\pi x)}{\pi(x+1)(x-1)}.$$

(c) Use the above function to prove that

$$\int_{-\infty}^{\infty} \left(\frac{\sin(\pi x)}{\pi(x^2 - 1)}\right)^2 dx = \frac{1}{2}.$$

- (74) Let \mathcal{F} be the family of functions $f : \mathbb{R} \to \mathbb{R}$ such that satisfying the following properties:
 - (a) $f \in \mathcal{M}(\mathbb{R})$. (b) $f(x) \ge 0$ for all $x \in \mathbb{R}$.
 - (c) f(0) = 1.
 - (d) supp $\widehat{f} \subset [-1, 1]$.
 - Find

$$\inf_{f\in\mathcal{F}}\int_{-\infty}^{\infty}f(x)\,\mathrm{d}x.$$

Moreover, show that there is a unique function $f \in \mathcal{F}$ such that the above infimum is attained.

(75) Let $f \in \mathcal{M}(\mathbb{R})$ such that $\widehat{f}(x) = 0$ for $|x| \ge 1$. Suppose that

$$f(x) \ge \frac{1}{1+x^2}.$$

for all $x \in \mathbb{R}$. Show that $\hat{f}(0) \ge \pi (e^{2\pi} + 1)/(e^{2\pi} - 1)$. In fact, prove that there is a unique function satisfying the mentioned properties and $\hat{f}(0) = \pi (e^{2\pi} + 1)/(e^{2\pi} - 1)$.

Email address: carlos.a.c.chavez@ntnu.no