Fourier analysis - NTNU 2022

Instructor: Andrés Chirre

PROBLEM SET 1

(1) Suppose f is 2π -periodic and integrable on any finite interval. Prove that if $a, b \in \mathbb{R}$, then

$$\int_{a}^{b} f(x) dx = \int_{a+2\pi}^{b+2\pi} f(x) dx = \int_{a-2\pi}^{b-2\pi} f(x) dx.$$

Also, prove that

$$\int_{-\pi}^{\pi} f(x+a) \, \mathrm{d}x = \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x = \int_{-\pi+a}^{\pi+a} f(x) \, \mathrm{d}x.$$

(2) Let f be a 2π -periodic and integrable function. Then, for all $n \in \mathbb{Z}$, $n \neq 0$ we have

$$\widehat{f}(n) = \frac{1}{4\pi} \int_{-\pi}^{\pi} (f(x) - f(x + \pi/n)) e^{-inx} dx.$$

(3) Assume that f is 2π -periodic and integrable function defined on \mathbb{R} .

- (a) Prove that if f is even, then $\widehat{f}(n) = \widehat{f}(-n)$. Show that its Fourier series can be written as a cosine series.
- (b) Prove that if f is odd, then $\widehat{f}(n) = -\widehat{f}(-n)$. Show that its Fourier series can be written as a sine series.
- (c) Suppose that $f(\theta + \pi) = f(\theta)$ for all $\theta \in \mathbb{R}$. Show that $\widehat{f}(n) = 0$ for all odd n.
- (d) Show that if f is real-valued, then $\overline{\widehat{f}(n)} = \widehat{f}(-n)$ for all $n \in \mathbb{Z}$.
- (4) Let $f: \mathbb{R} \to \mathbb{R}$ be an integrable function such that $f(x+\pi) = -f(x)$ for all $x \in \mathbb{R}$. Show that $\widehat{f}(2k) = 0$ for all $k \in \mathbb{Z}$.
- (5) Let $f:[0,2\pi]\to\mathbb{C}$ be a continuous function such that $f(0)=f(2\pi)$. Suppose that $\widehat{f(n)}=\widehat{f}(-n)$ for all $n\in\mathbb{Z}$. Show that f is real-valued (i.e. $f(x)\in\mathbb{R}$ for $x\in[0,2\pi]$).
- (6) Let f be the 2π -periodic function defined by $f(x) = x(x^2 \pi^2)$ in $[-\pi, \pi]$.
 - (a) Compute the *n*-Fourier coefficient of f, for all $n \in \mathbb{Z}$.
 - (b) Prove that the Fourier series of f converges uniformly to f.
- (7) Consider the 2π -periodic odd function defined on $[0,\pi]$ by $f(\theta) = \theta(\pi \theta)$.
 - (a) Draw the graph of f.
 - (b) Compute the Fourier coefficients of f, and show that

$$f(\theta) = \frac{8}{\pi} \sum_{k: odd > 1} \frac{\sin(k\theta)}{k^3}.$$

We refer to an integrable function $f:[a,b]\to\mathbb{C}$, when Re f and Im f are Riemann integrable functions.

(8) Let $0 < \delta \le \pi$. On the interval $[-\pi, \pi]$ consider the function

$$f(\theta) = \begin{cases} 0 & \text{if } |\theta| > \delta, \\ 1 - |\theta|/\delta & \text{if } |\theta| \le \delta. \end{cases}$$

Thus the graph of f has the shape of a triangular tent. Show that

$$f(\theta) = \frac{\delta}{2\pi} + 2\sum_{n=1}^{\infty} \frac{1 - \cos(n\delta)}{n^2\pi\delta} \cos(n\theta).$$

- (9) Let f be the function defined on $[-\pi, \pi]$ by $f(\theta) = |\theta|$.
 - (a) Draw the graph of f.
 - (b) Compute the Fourier coefficients of f, and show that

$$\widehat{f}(n) = \begin{cases} \frac{\pi}{2} & \text{if } n = 0, \\ \frac{-1 + (-1)^n}{\pi n^2} & \text{if } n \neq 0. \end{cases}$$

(c) Taking $\theta = 0$, prove that

$$\sum_{n \, : \, odd \, \geq 1} \frac{1}{n^2} = \frac{\pi^2}{8} \quad \text{ and } \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- (10) Let $\alpha \in \mathbb{C} \mathbb{Z}$ and let f be the 2π -periodic function defined by $f(\theta) = \cos(\alpha \theta)$, for $\theta \in [-\pi, \pi]$.
 - (a) Compute the Fourier coefficients of f.
 - (b) Show that the Fourier series converges² pointwise to $f(\theta)$ for each $\theta \in [-\pi, \pi]$.
 - (c) Show that

$$\frac{\alpha \pi}{\sin(\alpha \pi)} = 1 + 2\alpha^2 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2 - \alpha^2}.$$

(d) Show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2 - \alpha^2} = \frac{1}{2\alpha^2} - \frac{\pi}{2\alpha \tan(\alpha \pi)}.$$

- (11) Let f be the 2π -periodic function defined by $f(x) = \cosh(x) = (e^x + e^{-x})/2$, for $x \in [-\pi, \pi]$. Compute its Fourier series.
- (12) Let f be the function defined on $[-\pi, \pi]$ by

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0, \\ 1 & \text{if } x = 0, \end{cases}$$

and extend f periodically in \mathbb{R} .

(a) Show that

$$\widehat{f}(n) = \frac{1}{2\pi} \int_{(n-1)\pi}^{(n+1)\pi} \frac{\sin(x)}{x} dx.$$

The convergence of the Fourier series refers to the limit of symmetric partial sums.

- (b) Show that the Fourier series converges uniformly to f.
- (c) Compute

$$\lim_{N \to \infty} \int_{-N}^{N} \frac{\sin x}{x} \, \mathrm{d}x.$$

- (13) (Weierstrass M-test) Let $\{f_n\}_{n\geq 1}$ be a sequence of real or complex-valued functions defined on a set $B\subset\mathbb{C}$. Suppose that there is a sequence of non-negative numbers $\{M_n\}_{n\geq 1}$ such that:
 - (a) $|f_n(x)| \leq M_n$, for all $x \in B$ and $n \geq 1$.
 - (b) $\sum_{n=1}^{\infty} M_n < \infty.$

Then, we conclude that the series $\sum_{n\geq 1}^{\infty} f_n(x)$ converges absolutely and uniformly on B. A similar result holds for $\{f_n\}_{n\in\mathbb{Z}}$.

- (14) (Dirichlet-test) Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers and $\{b_n\}_{n\geq 1}$ be a sequence of complex numbers. Suppose that
 - (a) a_n decreases monotonically to 0.
 - (b) There is M > 0 such that

$$\left| \sum_{n=1}^{N} b_n \right| \le M$$

Then, the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

(15) Consider the function defined by

$$f(x) = \begin{cases} -\frac{\pi}{2} - \frac{x}{2} & \text{if } -\pi \le x < 0, \\ 0 & \text{if } x = 0, \\ \frac{\pi}{2} - \frac{x}{2} & \text{if } 0 < x \le \pi. \end{cases}$$

Verify that

$$f(x) \sim \frac{1}{2i} \sum_{n \neq 0} \frac{e^{inx}}{n}.$$

Show that the series converges (in the symmetric sense) for every $x \in [-\pi, \pi]$. Also, show that the series converges (not only in the symmetric sense) for all $x \in [-\pi, \pi] - \{0\}$.

- (16) Let $f(x) = \chi_{[a,b]}(x)$ be the characteristic function of the interval $[a,b] \subset [-\pi,\pi]$.
 - (a) Show that the Fourier series of f is given by

$$\frac{b-a}{2\pi} + \sum_{n \neq 0} \frac{e^{-ina} - e^{-inb}}{2\pi in} e^{inx}.$$

3

(b) Show that if $a \neq \pi$ or $b \neq \pi$, then the Fourier series does not converge absolutely for any x. [Hint: Use the estimate $\sin^2(x) \leq |\sin(x)|$ and Dirichlet-test.]

(17) Suppose that $f: \mathbb{R} \to \mathbb{C}$ be a 2π -periodic function such that $f \in C^k(\mathbb{R})$, for some $k \geq 1$. Show that there is M > 0 such that for all $n \geq 1$,

$$\left|\widehat{f}(n)\right| \le \frac{M}{|n|^k}.$$

(18) Suppose that $\{f_k\}_{k\geq 1}$ is a sequence of Riemann integrable functions on the interval $[0,2\pi]$ such that

$$\int_0^{2\pi} |f_k(x) - f(x)| \, \mathrm{d}x \to 0,$$

as $k \to \infty$. Show that $\widehat{f}_k(n) \to \widehat{f}(n)$ uniformly in n as $k \to \infty$.

"The wise man, hearing, will get greater learning, and the acts of the man of good sense will be wisely guided."

 $Email\ address:\ {\tt carlos.a.c.chavez@ntnu.no}$