Fourier analysis - NTNU 2022 Instructor: Andrés Chirre

PROBLEM SET 5

(72) Find the constant C > 0 such that

$$\int_{-\infty}^{\infty} \frac{e^{-\pi x^2}}{1+x^2} \, \mathrm{d}x = C \int_{1}^{\infty} e^{-\pi x^2} \, \mathrm{d}x$$

(73) Let a, b > 0. Use the Fourier transform of the function $e^{-2\pi\lambda|x|}$ to compute

$$\int_{-\infty}^{\infty} \frac{1}{(a^2 + x^2)(b^2 + x^2)} \, \mathrm{d}x.$$

- (74) Let $f(x) = (x^2 + 2x + 2)e^{-\pi x^2}$. Compute the Fourier transform of f.
- (75) Let $g: \mathbb{R} \to \mathbb{R}$ be the function such that

$$e^{\pi t^2}g(t) = \int_{-\infty}^{\infty} (x^2 + 2x + 2)e^{-2\pi x(x-t)} dx$$

for all $t \in \mathbb{R}$. Compute the Fourier transform of g.

(76) For each $m \ge 1$ a natural number, we want to obtain a expression for

$$\zeta(2m) = \sum_{n=1}^{\infty} \frac{1}{n^{2m}},$$

(a) Apply the Poisson summation formula to obtain, for t > 0 that:

$$\frac{1}{\pi}\sum_{n\in\mathbb{Z}}\frac{t}{t^2+n^2} = \sum_{n\in\mathbb{Z}}e^{-2\pi t|n|}$$

(b) Prove the following identity valid for 0 < t < 1:

$$\frac{1}{\pi}\sum_{n\in\mathbb{Z}}\frac{t}{t^2+n^2} = \frac{1}{\pi t} + \frac{2}{\pi}\sum_{m=1}^{\infty}(-1)^{m+1}\zeta(2m)t^{2m-1}.$$

(c) Use the fact that

$$\frac{z}{e^z - 1} = 1 - \frac{z}{2} + \sum_{m=1}^{\infty} \frac{B_{2m}}{(2m)!} z^{2m},$$

to deduce the formula

$$2\zeta(2m) = (-1)^{m+1} \frac{(2\pi)^{2m}}{(2m)!} B_{2m}$$

The numbers B_{2m} are known as the Bernoulli numbers. Compute $\zeta(6)$ and $\zeta(8)$.

- (77) The following facts have been given in class as exercises.
 - (a) Prove the fomula $\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$, for all $s \in \mathbb{C}$.
 - (b) Let $\eta(s)$ the analytic function defined on $\operatorname{Re} s > 0$ as $\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}$ Show that $\eta(1) = \ln 2$. Also, show that $\eta(s)$ has zeros at the points $s = \frac{2\pi ki}{\ln 2} + 1$, where $k \in \mathbb{Z} \setminus \{0\}$.

- (c) Prove that $\theta(\lambda) = \sum_{n=1}^{\infty} e^{-\pi\lambda n^2}$ is a continuous function on $(0, \infty)$. (d) Justify the step $\sum_{n=1}^{\infty} \int_0^{\infty} e^{-\pi\lambda n^2} \lambda^{s/2-1} d\lambda = \int_0^{\infty} \sum_{n=1}^{\infty} e^{-\pi\lambda n^2} \lambda^{s/2-1} d\lambda$, for $\operatorname{Re} s > 1$.
- (e) Prove that $g: \mathbb{C} \to \mathbb{C}$ is an entire function, where

$$g(s) = \int_{1}^{\infty} \theta(u) \left(u^{-1/2 - s/2} + u^{s/2 - 1} \right) du.$$

(78) Prove that, for $s \in \mathbb{C}$ such that $\operatorname{Re} s > 0$ we have¹

$$\sum_{n=-\infty}^{\infty} e^{-sn^2} = \sqrt{\frac{\pi}{s}} \sum_{n=-\infty}^{\infty} e^{-\pi^2 n^2/s}.$$

- (79) In class we have proved the Heisenberg uncertainty principle for $f \in \mathcal{S}(\mathbb{R})$. Which conditions are sufficient for $f \in \mathcal{M}(\mathbb{R})$ to obtain the desired inequality?
- (80) Let a, b > 0. Let $f \in \mathcal{S}(\mathbb{R})$ such that $\int_{-\infty}^{\infty} |f(x)|^2 dx = 1$. Suppose that

$$\int_{-a}^{a} x^{2} |f(x)|^{2} \, \mathrm{d}x \ge \frac{1}{2} \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} \, \mathrm{d}x,$$

and

$$\int_{-b}^{b} \xi^{2} |\widehat{f}(\xi)|^{2} \,\mathrm{d}\xi \ge \frac{1}{2} \int_{-\infty}^{\infty} \xi^{2} |\widehat{f}(\xi)|^{2} \,\mathrm{d}\xi$$

Prove that $ab \geq 1/8\pi$.

- (81) Suppose that $f \in \mathcal{M}(\mathbb{R})$ such that f and \widehat{f} have compact supports. Prove that f(x) = 0 for all $x \in \mathbb{R}$.
- (82) Prove Poincare's inequality: for all $f \in C^2([-\frac{1}{2},\frac{1}{2}])$ such that $f(-\frac{1}{2}) = f(\frac{1}{2})$ we have

$$\int_{-1/2}^{1/2} \left(f(x) - \int_{-1/2}^{1/2} f(t) \, \mathrm{d}t \right)^2 \mathrm{d}x \le \frac{1}{4\pi^2} \int_{-1/2}^{1/2} (f'(x))^2 \mathrm{d}x.$$

For which functions does equality hold? (Hint: Use fourier series).

(83) Let $f \in \mathcal{M}(\mathbb{R})$ such that $\widehat{f}(x) = 0$ for $|x| \ge 1$. Suppose that

$$f(x) \ge e^{-2\pi|x|}$$

for all $x \in \mathbb{R}$. Show that $\widehat{f}(0) \ge (e^{2\pi} + 1)/(e^{2\pi} - 1)$.

- (84) Let $f \in \mathcal{M}(\mathbb{R})$ such that for all $\xi \in \mathbb{R}$ we have $|\widehat{f}(\xi)| \leq Ae^{-2\pi a|\xi|}$, for some constants a, A > 0. Prove that f(x) is the restriction to \mathbb{R} of a function f(z) holomorphic in the strip $\{z \in \mathbb{C} : |\text{Im } z| < b\}$ for any 0 < b < a.
- (85) Let $f \in \mathcal{M}(\mathbb{R})$ such that $\widehat{f}(\xi) = O(e^{-2\pi a|\xi|})$, for some constants a > 0. Suppose that f(1/n) = 0for all $n \in \mathbb{N}$. Prove that $f \equiv 0$.

¹ The complex root for s is defined such that $\sqrt{1} = 1$.

- (86) Prove the following version of Phragmén Lindelöf Theorem: Suppose that F is a holomorphic function in the sector $S = \{z \in \mathbb{C} : -\pi/4 < \arg z < \pi/4\}$ that is continuous on the closure of S. Assume $|F(z)| \leq 1$ on the boundary of S, and that there are constants C, c > 0 such that for all z in S we have $|F(z)| \leq Ce^{c|z|}$. Then $|F(z)| \leq 1$ for all $z \in S$.
- (87) Let $f : \mathbb{R} \to \mathbb{C}$ be a function such that $f \in \mathcal{M}(\mathbb{R})$ and $\operatorname{supp} \widehat{f} \subset [-\frac{1}{2}, \frac{1}{2}]$. Suppose that f(n) = 0 for all $n \in \mathbb{Z} \setminus \{-1, 1\}$ and f(-1) + f(1) = 0.
 - (a) Prove that $\int_{-\infty}^{\infty} f(x) dx = 0.$
 - (b) Prove that, if f(1) = i, then

$$f(x) = -\frac{2i\sin(\pi x)}{\pi(x+1)(x-1)}.$$

(c) Use the above function to prove that

$$\int_{-\infty}^{\infty} \left(\frac{\sin(\pi x)}{\pi(x^2 - 1)}\right)^2 \mathrm{d}x = \frac{1}{2}$$

(88) Let \mathcal{F} be the family of functions $f : \mathbb{R} \to \mathbb{R}$ such that satisfying the following properties: $f \in \mathcal{M}(\mathbb{R})$, $f(x) \ge 0$ for all $x \in \mathbb{R}$, f(0) = 1, and $\operatorname{supp} \widehat{f} \subset [-1, 1]$. Find

$$\inf_{f\in\mathcal{F}}\int_{-\infty}^{\infty}f(x)\,\mathrm{d}x.$$

Moreover, show that there is a unique function $f \in \mathcal{F}$ such that the above infimum is attained.

(89) Let $f \in \mathcal{M}(\mathbb{R})$ such that $\widehat{f}(x) = 0$ for $|x| \ge 1$. Suppose that

$$f(x) \ge \frac{1}{1+x^2}.$$

for all $x \in \mathbb{R}$. Show that $\hat{f}(0) \ge \pi (e^{2\pi} + 1)/(e^{2\pi} - 1)$. In fact, prove that there is a unique function satisfying the mentioned properties and $\hat{f}(0) = \pi (e^{2\pi} + 1)/(e^{2\pi} - 1)$.

(90) Define the functions

$$m^{\pm}(z) = \frac{1}{1+z^2} \left(\frac{e^{2\pi} + e^{-2\pi} - 2\cos(2\pi z)}{(e^{\pi} \mp e^{-\pi})^2} \right)$$

Prove that $m^{\pm}(z)$ are entire functions of exponential type 2π such that their Fourier transforms have compact supports in [-1, 1]. Also prove that

$$m^{-}(x) \le \frac{1}{1+x^2} \le m^{+}(x)$$
 for all $x \in \mathbb{R}$.

"The heart of the man of good sense gets knowledge; the ear of the wise is searching for knowledge."

 $Email \ address: \ {\tt carlos.a.c.chavez@ntnu.no}$