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Exercise 54)

We first observe that
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In the last line we define 7, implicitly. We know from problem 52 that
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so what is left is to find F{7,}. We start by observing that
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And hence we have

x> 1 - d 1
—— = — | 2mir—————
(a®> +22)? 4w dx a? 4 22
Why is this nice? Recall that we under certain assumptions have the following formulas for
fe MR):
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For the first formula to work we need the additional assumption that xf(z) € M(R) and

for the second formula we need f € M(R) N CY(R) and f' € M(R). It is not hard to see
that all this assumptions are furfilled in the application of the formulas under:
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Hence we finally conclude that
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Exercise 55)

We observe
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Since e”* # 0 we conclude that Vz € R we have
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Applying the Fourier transform to both sides and the convolution rule for Fourier transform
we get that 0 = f(£)e*(€), and the Fourier transform of the Gaussian is never zero so
f(&) = 0 so by problem 47¢) we can conclude that f = 0.

Exercise 56)
a)

First observe that & = 0 is trivial so we may assume h # 0. We apply Fourier inversion
(which we can since f, f € M(R)) to get
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Now the bounding begins. Since f € M(R), f(€) = O(|¢|72=*). Since £ > £ when
0 < ¢ < n, there is no harm in assuming 0 < o < 1. Bounding Z, we get for some constant
C that:
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To bound Z; we split up into two cases: |h| < 1 and |h| > 1. By Problem 45 we can find a
constant K such that
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Let us first consider the case |h| > 1: using the same bounds as for Z, and a trivial estimate

we get
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Since |h| > 1 we have | h‘ < |h|®, which finish the bound in this case, because then
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What we need to finish the proof is to do the case |h| < 1. To do this we split up the integral

once more: into the integral over |{| < 1 and 1 < |[{] < |h| Let us call those integrals J;

and J, respectively. For Ji, recall the bound proven in class: |e2™" — 1| < |27¢h|. Since f
is continuous (since it is in M(R)) and [£| < 1 is a compact set, we find a constant Cy > 0

such that |f(€)] < C; for all |¢| < 1. Then
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To bound ‘72 we simply integrate and use that | f ( )| < ‘ §|1 " for some constant M > 0 when
1< €] < |h| Now
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Hence we have in the case that |h| < 1 found a constant
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such that
T, < D(|h|* + |n|) < D(|R|* + |h|*) < 2D|h|*

where we in the last inequality have used that |h| < 1 and 0 < o < 1. Thus we can also
conclude in the case |h| < 1 that
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so we have proved that f satisifies the Holder condition with exponent «.
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