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Exercise 54)

We first observe that
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In the last line we define Ta implicitly. We know from problem 52 that
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so what is left is to find F{Ta}. We start by observing that
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Why is this nice? Recall that we under certain assumptions have the following formulas for
f ∈M(R) :
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For the first formula to work we need the additional assumption that xf(x) ∈ M(R) and
for the second formula we need f ∈ M(R) ∩ C1(R) and f ′ ∈ M(R). It is not hard to see
that all this assumptions are furfilled in the application of the formulas under:
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Hence we finally conclude that
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Exercise 55)
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Since ex
2 6= 0 we conclude that ∀x ∈ R we have
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Applying the Fourier transform to both sides and the convolution rule for Fourier transform

we get that 0 = f̂(ξ)ê−x2(ξ), and the Fourier transform of the Gaussian is never zero so

f̂(ξ) ≡ 0 so by problem 47c) we can conclude that f ≡ 0.

Exercise 56)

a)

First observe that h = 0 is trivial so we may assume h 6= 0. We apply Fourier inversion
(which we can since f, f̂ ∈M(R)) to get
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Now the bounding begins. Since f̂ ∈ M(R), f̂(ξ) = O(|ξ|−1−α). Since ξ−ζ ≥ ξ−η when
0 ≤ ζ ≤ η, there is no harm in assuming 0 < α < 1. Bounding I2 we get for some constant
C that:
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To bound I1 we split up into two cases: |h| < 1 and |h| ≥ 1. By Problem 45 we can find a
constant K such that

|f̂(ξ)| ≤ K

1 + |ξ|1+α
∀ξ ∈ R
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Let us first consider the case |h| ≥ 1: using the same bounds as for I2 and a trivial estimate
we get

I2 ≤ 2K
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Since |h| ≥ 1 we have 1
|h| ≤ |h|

α, which finish the bound in this case, because then
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What we need to finish the proof is to do the case |h| < 1. To do this we split up the integral
once more: into the integral over |ξ| ≤ 1 and 1 < |ξ| < 1

|h| . Let us call those integrals J1

and J2 respectively. For J1, recall the bound proven in class: |e2πiξh − 1| ≤ |2πξh|. Since f̂
is continuous (since it is in M(R)) and |ξ| ≤ 1 is a compact set, we find a constant Cf > 0

such that |f̂(ξ)| ≤ Cf for all |ξ| ≤ 1. Then
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Hence we have in the case that |h| < 1 found a constant

D = 4πCf +
4πM

1− α

such that
I1 ≤ D(|h|α + |h|) ≤ D(|h|α + |h|α) ≤ 2D|h|α

where we in the last inequality have used that |h| < 1 and 0 < α < 1. Thus we can also
conclude in the case |h| < 1 that
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so we have proved that f satisifies the Hölder condition with exponent α.
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