
EXAM
TMA4180 OPTIMIZATION THEORY

May 27, 2008
Solution with additional comments

Preliminary

1 Problem

Estimate the speed of convergence for the Steepest Descent method near the solution of the uncon-
strained problem

min
(x;y)2R2

n
(1� x)2 + � (y � x)2

o
(1)

when � much larger than 1.

Solution:

This may be viewed as a quadratic penalty formulation of the trivial problem

min
(x;y)2R2

(1� x)2 ;

y = x: (2)

with the solution (1; 1). It is easy to compute the Hessian:

r2f =
"

@2f
@x2

@2f
@x@y

@2f
@x@y

@2f
@y2

#
=

�
2 + 2� �2�
�2� 2�

�
: (3)

Eigenvalues follow from the characteristic equation, �2 � (4�+ 2)�+ 4� = 0:

�1 = 2�+ 1 +
p
4�2 + 1;

�2 = 2�+ 1�
p
4�2 + 1: (4)

With a condition number � = �max=�min, the standard convergence estimate is

kxj � x�kA �
�� 1
�+ 1

kxj�1 � x�kA : (5)

Here,
�� 1
�+ 1

=
�1 � �2
�1 + �2

=
2
p
4�2 + 1

4�+ 2
� 1� 2

�
+O

�
1

�2

�
: (6)

2 Problem

(a) What is the content of the Duality Theorem in linear programming?

(b) Show that the following two problems are dual problems (A has full row rank):

(P) (D)
minx c

0x
Ax � b; x � 0:

max� b
0�

A0� � c; � � 0:
(7)
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(Hint: Consider the KKT-equations and start by using (�; s) as Lagrange multipliers for P and

(x; u) for D).
(c) Find the minimum value of

2x1 + 2x2 + 3x3 + 2x4 (8)

when

2x1 + x2 + x3 + 0x4 � 3
x1 + 2x2 + 0x3 + x4 � 1 (9)

xi � 0; i = 1; � � � ; 4:

Solution:

(a) The Dual and Primal Problems have equivalent KKT-equations, and variables and Lagrange
multipliers switch place. The Duality Theorem states that if any of the problems are unbounded,
the other is infeasible. Moreover, the optimal objective values are equal and, since one is a
minimum and the other a maximum problem, objectives values for the two are separated by the
optimal objective value on the real line.

(b) In order to establish the statement, we need to look at the KKT-equations. For the primal
problem (P), and using that LP (x; �; s) = c0x� �0 (Ax� b)� s0x, we obtain

rxL0P = c�A0�� s = 0;
Ax� b � 0;

�0 (Ax� b) = 0;
s0x = 0; (10)

�; s; x � 0:

Solving for s,

�0 (Ax� b) = 0;�
c�A0�

�0
x = 0; ;

Ax� b � 0; (11)

c�A0� � 0;
�; x � 0:

For the dual problem we use LD (�; x; u) = �b0�� x0 (c�A0�)� u0�:

r�L0D = �b+Ax� u = 0;
x0
�
c�A0�

�
= 0;

c�A0� � 0 (12)

u0� = 0; (13)

�; u; x � 0:

Eliminating u leads directly to Eqn. 11. This establishes the correspondence.
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Figure 1: Solution of the dual problem is found at �1 = 1, �2 = 0.

(c) We consider the dual problem, which may be read directly from (b):

max
�
(3�1 + �2) ;2664

2 1
1 2
1 0
0 1

3775� �
2664
2
2
3
2

3775 ; � � 0: (14)

This is easy to solve graphically, see Fig. 1. Since min c0x = max�0b = 3�1+0 = 3, the minimum
we seek is 3.

Even if it is not asked for, �nding x is easy: Since � is known, we apply (c�A0�)0 x = 0 to show
that only x1may be di¤erent from 0, and x2 = x3 = x4 = 0. Looking at the original problem it
follows that

x� =

�
3

2
; 0; 0; 0

�
:

3 Problem

In a typical Trust Region iteration we have, at iteration n; a sphere Dn with diameter �n around
the current iterate xn. We then form a quadratic approximation

m (p) = f (xn) +rf (xn) p+
1

2
p0Bnp

and solve for
pn = arg min

p2Dn
m (p) :

(a) Explain how we move to xn+1 and adjust the diameter of the sphere.

(b)The standard form of the Trust Region sub-problem is

min
kxk�1

q (x) ; (15)
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where q (x) = 1
2x
0Bx � b0x and the constraint is written c (x) = 1 � x0x � 0. Below we only

consider a situation where B is positive de�nite (B > 0). Will the problem always have a unique
solution? State the KKT-equations and discuss their solution when the global solution xg of
the unconstrained problem (xg = argminx2Rn q (x)) is inside or outside the domain de�ned by
c (x) � 0.
Solution:

(a) After solving (perhaps approximately) the sub-problem

pn = argmin
p2D

m (p) ; (16)

we form

�n =
f (xn)� f (xn + pn)
m (0)�m (pn)

=
Actual decrease

Estimated decrease
(17)

(xn + pn is tentatively xn+1). If � � 1, the approximation f (xn + p) � m (p) works very well,
and we move to xn+1 = xn+ pn and increase �; � := ��; � > 1: If �� 1, the approximation is
bad; we stay at xn and try a smaller �; � := ��; � < 1. Otherwise, we move to xn+1 = xn+ pn
and keep the size of �.

(b) The problem is

min

�
1

2
x0Bx� b0x

�
when 1� x0x � 0: (18)

(Here it was assumed that symmetry is part of the de�nition of positive de�nite. If you don�t
like that, replace B by (B +B0) =2 below). We observe that since B > 0, the objective is strictly
convex and the domain we are considering, D = fx; kxk � 1g is convex as well. Since D is
bounded, we always have a unique solution (which is found by solving the KKT-equations). With
the Lagrangian L (x; �) = 1

2x
0Bx� b0x� � (1� x0x), we obtain the KKT-equations

rxL (x; �)0 = Bx� b+ �x = 0;
�
�
1� x0x

�
= 0; (19)

� � 0; 1� x0x � 0;

or

(B + I�)x = b;

�
�
1� x0x

�
= 0;

1� x0x � 0; � � 0:

The following situations occur:

1. If kxgk � 1, then xg 2 D, x� = xg = B�1b, and � = 0 satis�es all KKT-equations (this also
includes the special case when kxgk = 1).

2. If kxgk > 1, then the overall minimum is outside D and x� has to be on the boundary of

D (since r
�
1
2x
0Bx� b0x

�
6= 0 for all x 2 D). Note that with x�

�
= (B + I�)�1 b, we have

x0 = xg and lim�!1 x� = 0. We thus need to �nd (the unique!) �� > 0 so that x� = x��
and kx��k = 1.
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4 Problem

Consider a functional J de�ned for all continuous functions y (x) on [0; 1] ( y 2 C [0; 1]) as

J (y) =

Z 1

0
f (x; y (x)) dx; (20)

where f (x; y) is smooth and strictly convex in y for all �xed x in [0; 1].

(a) Write down the Gâteaux derivative (directional derivative) of J and show that J is strictly
convex (Use that f (x; y + v)� f (x; y) � @f

@y (x; y) v; with strict inequality unless v = 0).

(b) Show that an acceptable solution y� (that is, y� 2 C [0; 1]) of

@f

@y
(x; y�) = 0; x 2 [0; 1] ; (21)

is a unique minimizer for J (y).

A gardener delivers �owers to the wholesale market (=grossistmarkedet). The wholesale basis
price p0 (x) per unit varies a lot with the time of the year ( 0 � x � 1). In addition, if the
gardener provides an amount y (x) to the market ma�a, the actual price she/he obtains may be
modeled as

p (x) = p0 (x) (1� �y (x)) ; � > 0: (22)

(Since �owers have to be sold immediately after they are produced, the price is highly negotiable
(=diskutabel)!). The gardener�s income for one year is

P (y) =

Z 1

0
p (x) y (x) dx: (23)

In addition, the overall yearly production is limited by regulations, so that

G (y) =

Z 1

0
y (x) dx = 1: (24)

(c) Based on this simpli�ed model, determine the optimal production strategy y (x) for maximizing
P (y) when � � 1=2 and p0 (x) � 1 > 0. What happens when � � 1, and what is the obvious
(but unrealistic) strategy when �! 0? (Don�t forget we seek the minimum of �P (y)!)
Solution:

(a) The derivative is computed in the standard way,

�J (y; v) =
d

d"

Z 1

0
f (x; y + "v) dx

����
"=0

=

Z 1

0

@f

@y
(x; y (x)) v (x) dx: (25)

To prove that J is convex, we check the de�nition of a convex functional:

J (y + v)� J (y) =
Z 1

0
[f (x; y + v)� f (x; y)] dx

�
Z 1

0

@f

@y
(x; y (x)) v (x) dx = �J (y; v) : (26)

Since the inequalities for the integral kernel are sharp whenever v (x) 6= 0, it follows that J is
strictly convex.
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It is also possible to say, referring to the theory in Troutman, that since the assumptions imply
that f is partly strongly convex, J is strictly convex.

(b) If y� 2 C [0; 1] solves
@f

@y
(x; y� (x)) = 0; x 2 [0; 1] ; (27)

we have for all y 2 C [0; 1] that

J (y)� J (y�) = J (y� + (y � y�))� J (y�) �
Z 1

0

@f

@y
(x; y� (x)) (y (x)� y� (x)) dx = 0: (28)

Hence, y� is a global minimum, and unique since J is strictly convex.

(c) We formulate the problem as a constrained variational minimization by means of the La-
grangian,

L (y) = �P (y) + �G (y) =
Z 1

0

�
p0 (x)

�
�y2 � y

�
+ �y

�
dx: (29)

Since p0 (x) is positive for all x and � > 0, f (x; y) = p0 (x)
�
�y2 � y

�
+ �y will always be strictly

convex in y. It is therefore su¢ cient to solve

@

@y

�
p0 (x)

�
�y2 � y

�
+ �y

�
= 2�p0 (x) y � p0 (x) + � = 0; (30)

and adjust � so that G (y) = 1. Now,

y (x; �) =
1

2�

�
1� �

p0 (x)

�
; (31)

and G (y) = 1 leads to

1 =
1

2�

�
1� �

Z 1

0

dx

p0 (x)

�
; (32)

Finally,

y� (x) =
1

2�

241 + (2�� 1)� 1
p0(x)R 1
0

dx
p0(x)

;

35 : (33)

Since � � 1=2, we see that y� (x) > 0 over the whole year. When � = 1=2, the production may
even be kept constant. As � gets bigger, the optimal production strategy approaches

y�1 (x) =
1R 1

0
dx
p0(x)

1

p0 (x)
: (34)

This means that the production is low when the price is high, and vice versa! When � < 1=2,
is possible that y� (x) becomes 0, and it pays to stop the production for some periods with low
prices (when � decreases, y� (x) = 0 is �rst reached around the minimum of p0 (x). If � = 0, the
optimal solution is of course to sell the complete yearly production around the time of maximum
price!
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5 Problem

Consider the following functionals and their de�nition domains:

J1 (y) =

Z 1

0

h
y0 (x)2 + 12xy (x)

i
dx; y 2 C2 [0; 1] ; y (0) = 0; y (1) = 1; (35)

J2 (y) =

Z �=2

0

h
y0 (x)2 � y (x)2

i
dx; y 2 C2 [0; �=2] ; y (0) = 0; y (�=2) = 1; (36)

J3 (y) =

Z 2�

0

h
y0 (x)2 � y (x)2

i
dx; y 2 C2 [0; 2�] ; y (0) = 0; y (2�) = 0: (37)

Find the stationary points (functions) by solving the Euler equations. Try to determine whether
they are minima (For J2 and J3, a reasonable discussion without conclusion is su¢ cient for a
full score!).

Solution:

All functionals have the standard form, and we recall that for F (y) =
R b
a f (x; y; y

0) dx, the
derivative is given by

�F (y; v) =

�
@f

@y0
v

�b
a

�
Z b

a

�
d

dx

@f

@y0
� @f
@y

�
vdx: (38)

In the present cases, the allowed functions have �xed end-points, in which case it is su¢ cient that
y� solves the Euler equation

d

dx

@f

@y0
� @f
@y

= 0; (39)

and satis�es the boundary conditions. The Euler equation for J1 is

2y00 (x) + 12x = 0; (40)

with the general solution
y (x) = x3 + c1 + c2x: (41)

The boundary conditions imply that y� (x) = x3 is the unique solution. This solution is also a
unique minimum of J1 since the function

f1 (x; y; z) = z
2 + 12xy (42)

is partially strongly convex, and hence J1 is strictly convex.

For J2 and J3 the Euler equation is
y00 + y = 0: (43)

The boundary conditions for J2 implies the unique solution

y� (x) = sinx: (44)

Since the function f (x; y; z) = z2 � y2 is not partially strongly convex, J2 may not be convex,
and hence the solution may not be a minimum. The same conclusion applies to J3, but here the
problem

y00 + y = 0;

y (0) = y (2�) = 0; (45)
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has many solutions, the most obvious being

y� (x) = a sinx; a 2 R: (46)

The functional has the constant value 0 for all of these

J3 (y) =

Z 2�

0

�
a2 cos2 x� a2 sin2 x

�
dx = 0: (47)

Without further investigations, we can not say whether these functions are minima, and the
solution ends here.

Addendum: The functional J3 has no global minimum: The simplest is to consider the function

y0 (x) = b sin
x

2
: (48)

The function is smooth and y0 (0) = y0 (2�) = 0, but it is not a stationary point. However,

J3 (y0) =

Z 2�

0

�
b2
1

4
cos2

x

2
� b2 sin2 x

2

�
dx = �b2 3

4
�; (49)

which can be made as small as we want by increasing b.

However, the functional J2 is even strictly convex. Consider

J2 (y + v)� J2 (y) =
Z �=2

0
2
�
y0v0 � yv

�
dx+

Z �=2

0

�
v02 � v2

�
dx: (50)

The �rst term on the RHS is just �J2 (y; v), so it is su¢ cient to show thatZ �=2

0

�
v02 � v2

�
dx � 0: (51)

for all allowed variations, that is, v 2 C2 [0; �=2] and v (0) = v (�=2) = 0.
I see no other way to decide this than applying a bit of Fourier analysis: The functions

�
sin k �Lx

	1
k=1

and (separately) the set
�
cos k �Lx

	1
k=1

make up complete, orthogonal systems for L2 [0; L]. Then,
for all absolutely continuous functions u on [0; L] with u0 2 L2 [0; L], we have the L2-identities

u (x) =
1X
k=1

bk sin kx;

u0 (x) =
1X
k=1

bk
k�

L
cos kx: (52)

This collection of functions contains all allowed variations v for J2, and if we now apply Parseval�s
Formula,

kuk2 =
Z L

0
u (x)2 dx =

L

2

1X
k=1

b2k (53)

(and similarly for u0), we obtainZ L

0

�
u0 (x)2 � u (x)2

�
dx =

L

2

1X
k=1

 �
k�

L

�2
� 1
!
b2k: (54)

As long as L � �, all terms in the series are non-negative. For J2, where L = �=2, the integral in
51 can never be negative and J2 is indeed strictly convex, since the sum is positive unless bk = 0,
k = 1; � � � . However, if L = 2�, as is the case for J3, this is no longer true. The transition occurs
at L = �.
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