Exercise \#1

January 17, 2023

Problem 1.

a) Prove that the real-valued function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is lower semi-continuous at $\bar{x} \in \mathbb{R}^{n}$ if and only if for any $\lambda<f(\bar{x})$ there exists $\delta>0$ such that $\lambda<f(x)$ for all $x \in \mathbb{B}(\bar{x}, \delta)$, where $\mathbb{B}(\bar{x}, \delta)$ is the open ball with center at \bar{x} and radius δ.
b) Prove that the real-valued function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is lower semi-continuous at \bar{x} if and only if for any $\epsilon>0$ there exists $\delta>0$ such that $f(\bar{x})-\epsilon<f(x)$ for all $x \in \mathbb{B}(\bar{x}, \delta)$. (Hint: use the condition given in a).)
c) Prove that the real-valued function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is lower semi-continuous in \mathbb{R}^{n} if and only if for any $\lambda \in \mathbb{R}$ the set $L_{\lambda}=\left\{x \in \mathbb{R}^{n}: f(x)>\lambda\right\}$ is open. (Hint: use the condition given in a) or b).)
d) Prove that the real-valued function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is lower semi-continuous in \mathbb{R}^{n} if and only if epi f is closed, where epi f is the epigraph of the function f, defined as epi $f=\left\{(x, p) \in \mathbb{R}^{n} \times \mathbb{R}: p \geq f(x)\right\}$. (Hint: use the conditions given in a) and c).)

Problem 2.

Check the properties of lower semi-continuity, coercivity and existence of a global minimizer for the following functions:
a) $\ell: \mathbb{R} \mapsto \mathbb{R}$ defined as $\ell(x)=5 x^{10}+8 x^{7}-9 x^{2}+x+c$, where $c \in \mathbb{R}$ is a constant.
b) $m: \mathbb{R} \mapsto \mathbb{R}$ defined as $m(x)=e^{x}-\frac{1}{1+x^{2}}$.
c) $p: \mathbb{R} \mapsto \mathbb{R}$ defined as $p(x)=x^{4}-20 x^{3}+\sup _{k \in \mathbb{N}} \sin \left(k^{2} x\right)$.
d) $q: \mathbb{R}^{2} \mapsto \mathbb{R}$ defined as $q(x)=x_{1}^{2}\left(1+x_{2}^{3}\right)+x_{1}^{2}$.

Problem 3.

Find the gradient, Hessian, and local minimizers of the objective function f of the optimization problem $\min _{x, y} f(x, y)$, where $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ is defined as:
a) $f(x, y)=\frac{x^{2}}{2}+x \cos y$.
b) $f(x, y)=2 x^{2}-4 x y+y^{4}+5 y^{2}-10 y$.

NTNU

Problem 4.

Compute the gradient, Hessian and local minimizers of the Rosenbrock function $f: \mathbb{R}^{2} \mapsto \mathbb{R}, f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$.

Problem 5.

For a matrix $A \in \mathbb{R}^{d \times d}$, we denote by

$$
\|A\|_{F}:=\left(\sum_{i, j=1}^{d} a_{i j}^{2}\right)^{\frac{1}{2}}
$$

its Frobenius norm. Show that the optimization problem

$$
\min _{\substack{A \in \mathbb{R}^{d \times d}, \operatorname{det} A>0}}\left(\|A\|_{F}+\frac{1}{\operatorname{det} A}\right)
$$

admits a global minimum.

