

# Exercise #1

January 17, 2023

## Problem 1.

- a) Prove that the real-valued function  $f : \mathbb{R}^n \mapsto \mathbb{R}$  is lower semi-continuous at  $\overline{x} \in \mathbb{R}^n$  if and only if for any  $\lambda < f(\overline{x})$  there exists  $\delta > 0$  such that  $\lambda < f(x)$  for all  $x \in \mathbb{B}(\overline{x}, \delta)$ , where  $\mathbb{B}(\overline{x}, \delta)$  is the open ball with center at  $\overline{x}$  and radius  $\delta$ .
- b) Prove that the real-valued function  $f : \mathbb{R}^n \mapsto \mathbb{R}$  is lower semi-continuous at  $\overline{x}$  if and only if for any  $\epsilon > 0$  there exists  $\delta > 0$  such that  $f(\overline{x}) \epsilon < f(x)$  for all  $x \in \mathbb{B}(\overline{x}, \delta)$ . (Hint: use the condition given in a).)
- c) Prove that the real-valued function  $f : \mathbb{R}^n \mapsto \mathbb{R}$  is lower semi-continuous in  $\mathbb{R}^n$  if and only if for any  $\lambda \in \mathbb{R}$  the set  $L_{\lambda} = \{x \in \mathbb{R}^n : f(x) > \lambda\}$  is open. (**Hint:** use the condition given in a) or b).)
- d) Prove that the real-valued function  $f : \mathbb{R}^n \mapsto \mathbb{R}$  is lower semi-continuous in  $\mathbb{R}^n$  if and only if epi f is closed, where epi f is the epigraph of the function f, defined as epi  $f = \{(x, p) \in \mathbb{R}^n \times \mathbb{R} : p \ge f(x)\}$ . (Hint: use the conditions given in a) and c).)

## Problem 2.

Check the properties of lower semi-continuity, coercivity and existence of a global minimizer for the following functions:

- a)  $\ell \colon \mathbb{R} \mapsto \mathbb{R}$  defined as  $\ell(x) = 5x^{10} + 8x^7 9x^2 + x + c$ , where  $c \in \mathbb{R}$  is a constant.
- b)  $m \colon \mathbb{R} \mapsto \mathbb{R}$  defined as  $m(x) = e^x \frac{1}{1+x^2}$ .
- c)  $p: \mathbb{R} \mapsto \mathbb{R}$  defined as  $p(x) = x^4 20x^3 + \sup_{k \in \mathbb{N}} \sin(k^2 x)$ .
- d)  $q: \mathbb{R}^2 \mapsto \mathbb{R}$  defined as  $q(x) = x_1^2(1+x_2^3) + x_1^2$ .

#### Problem 3.

Find the gradient, Hessian, and local minimizers of the objective function f of the optimization problem  $\min_{x,y} f(x, y)$ , where  $f \colon \mathbb{R}^2 \mapsto \mathbb{R}$  is defined as:

1

- a)  $f(x, y) = \frac{x^2}{2} + x \cos y$ .
- b)  $f(x, y) = 2x^2 4xy + y^4 + 5y^2 10y$ .



## Problem 4.

Compute the gradient, Hessian and local minimizers of the Rosenbrock function  $f : \mathbb{R}^2 \mapsto \mathbb{R}, f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$ .

# Problem 5.

For a matrix  $A \in \mathbb{R}^{d \times d}$ , we denote by

$$||A||_F := \left(\sum_{i,j=1}^d a_{ij}^2\right)^{\frac{1}{2}}$$

its Frobenius norm. Show that the optimization problem

$$\min_{\substack{A \in \mathbb{R}^{d \times d} \\ \det A > 0}} \left( \|A\|_F + \frac{1}{\det A} \right)$$

admits a global minimum.