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In this note we will study optimality conditions for constrained optimisation
problems of the form

(P ) min
x∈Ω

f(x),

where Ω ⊂ Rd is some convex set. Unless specified otherwise, we will always assume
that:

• The function f : Rd → R is C1.
• The set Ω ⊂ Rd is nonempty, convex, and closed.

1. Optimality conditions

In the case of unconstrained optimisation, that is, Ω = Rd, we have seen that a
necessary condition for a point x∗ ∈ Rd to be a minimiser of f is that ∇f(x∗) = 0.
One way to interpret this equation is that all directional derivatives of f at x∗ are
equal to zero. In other words, if we perturb the point x∗ a bit in any direction p,
the function values do not decrease significantly. Or, we can say that a necessary
condition for x∗ to be a minimiser of f is that there exists no descent direction p
of f at x∗.

In the case of constrained optimisation, the situation is notably different, because
we do not need to consider every possible direction, but rather only those that—at
least for sufficiently small step lengths—do not leave the set Ω we want to optimise
over. These directions are called feasible:

Definition 1.1. Let x ∈ Ω and p ∈ Rd. Then p is called a feasible direction at x,
if there exists t > 0 such that x+ tp ∈ Ω.

In other words, if we make a sufficiently small step in direction p starting at x,
we still remain in the set Ω.

At this point, it is important to note that this definition of feasible directions is
useful in the context of optimisation only because the set Ω is assumed to be convex:
The convexity of Ω implies that, given two points contained in Ω, the whole line
segment connecting these points is itself completely contained in Ω. Thus, if p is a
feasible direction at x and t > 0 is such that x+tp is contained in Ω, then x+ t̂p ∈ Ω
for all 0 < t̂ < t as well.

Moreover, we have the following characterisation of feasible directions:

Lemma 1.2. The direction p ∈ Rd is feasible, if and only if p = t(x̂− x) for some
x̂ ∈ Ω and t > 0.
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Proof. If p = t(x̂ − x) for some x̂ ∈ Ω, then x + p/t = x̂ ∈ Ω, and therefore p is
feasible. Conversely, if p is feasible, then x̂ := x + tp ∈ Ω for some t > 0, and we
can write p = (x̂− x)/t. □

Proposition 1.3 (First order necessary condition). Assume that x∗ is a local solu-
tion of (P ). Then

(1) ⟨∇f(x∗), p⟩ ≥ 0

for all feasible directions p at x∗, or, equivalently,

(2) ⟨∇f(x∗), x− x∗⟩ ≥ 0

for all x ∈ Ω.

Proof. Assume that p is a feasible direction. Then x∗ + tp ∈ Ω for all sufficiently
small t > 0. Since x∗ is a local solution of (P ), this implies that

f(x∗) ≤ f(x∗ + tp)

for all sufficiently small t > 0. Thus

⟨∇f(x∗), p⟩ = lim
t→0+

1

t

(
f(x∗ + tp)− f(x∗)

)
≥ 0.

Due to Lemma 1.2, we can write any feasible direction as p = t(x̂−x∗) for some
t > 0. Thus the two conditions (1) and (2) are equivalent. □

In the case of convex functions f it turns out that this necessary optimality
condition is again sufficient:

Proposition 1.4 (Necessary and sufficient conditions for convex problems). As-
sume that f is convex. Then x∗ is a global solution of (P ) if and only if x∗ ∈ Ω
and

⟨∇f(x∗), p⟩ ≥ 0

for all feasible directions p at x∗, or, equivalently, that

(3) ⟨∇f(x∗), x− x∗⟩ ≥ 0

for all x ∈ Ω.

Proof. The necessity and equivalence of these conditions has already been shown
in Proposition 1.3. It thus only remains to show that any one of them is sufficient.

To that end, assume that (3) holds and let x ∈ Ω. The convexity of f implies
that

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩.
Since by assumption (3) is satisfied, the last term in this inequality is non-negative,
and we obtain that f(x) ≥ f(x∗). Since this holds for every x ∈ Ω, it follows that
x∗ is a global solution of (P ). □

Another possibility of formulating optimality conditions is based on the notion
of the normal cone, which consists of all direction that form an obtuse angle with
all feasible directions at a given point x:

Definition 1.5. Given x ∈ Ω, we define the normal cone NΩ(x) to Ω at x by

NΩ(x) =
{
q ∈ Rd : ⟨q, x̂− x⟩ ≤ 0 for all x̂ ∈ Ω

}
.

Proposition 1.6. Assume that x∗ is a local solution of (P ). Then

−∇f(x∗) ∈ NΩ(x
∗).

Conversely, if f is convex and −∇f(x) ∈ NΩ(x), then x is a global solution of (P ).

Proof. This is an immediate consequence of the definition of the normal cone NΩ(x)
and Propositions 1.3 and 1.4. □
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Finally, it is possible to define the so called tangent cone to Ω at the point x ∈ Ω
by

(4) TΩ(x) :=
{
p ∈ Rd : ⟨q, p⟩ ≤ 0 for all q ∈ NΩ(x)

}
.

One can show that this tangent cone is (in the convex case!) the same tangent
cone as defined in [2, Def. 12.2]. Moreover, the latter can easily be seen to consist
(again, only in the convex case!) of all limits of feasible directions at x. The proof
of these results relies on the notion of polar cones and some results from convex
analysis and is quite a bit outside the scope of this note.

Theorem 1.7. The tangent cone TΩ(x) to the convex set Ω at the point x ∈ Ω is
the closure of the set of all feasible directions at x.

Proof. See [1, Chap. III, Cor. 5.2.5]. □

In particular, this implies that the necessary optimality conditions as well as the
sufficient optimality conditions for convex functions can be formulated in terms of
the tangent cone instead of the set of feasible directions. That is, if x∗ is a local
solution of (P ), then (1) actually holds for all p ∈ TΩ(x

∗).

Remark 1.8. In this note, we have defined the tangent cone in a somehow round-
about way. More commonly, one starts with defining the tangent cone as the closure
of the cone of all feasible directions. Then one introduces the normal cone as

NΩ(x) =
{
q ∈ Rd : ⟨q, p⟩ ≤ 0 for all p ∈ TΩ(x)

}
.

Finally, one uses results from convex analysis in order to show that the tangent and
normal cone defined in that manner also satisfy (4).

2. Projections

Now we consider the special case where f(x) = 1
2∥x−z∥2, for some fixed z ∈ Rd,

that is, the problem

(5) min
x∈Ω

1

2
∥x− z∥2.

In other words, given z ∈ Rd, we want to find the point x∗ ∈ Ω for which the
(squared Euclidean) distance to z is minimal.

Lemma 2.1. The problem (5) has a unique solution.

Proof. The existence of a solution follows from the fact that the function f(x) =
1
2∥x−z∥

2 is continuous and coercive, and the assumption that Ω ⊂ Rd is non-empty
and closed. The uniqueness of the solution follows from the strict convexity of f
together with the convexity of Ω. □

Definition 2.2. Given z ∈ Rd, we call the unique solution of (5) the projection of
z onto Ω and denote it as πΩ(z).

Proposition 2.3. The projection πΩ(z) of z onto Ω is uniquely characterised by
the conditions

πΩ(z) ∈ Ω

and 〈
πΩ(z)− z, x− πΩ(z)

〉
≥ 0

for every x ∈ Ω.



4 MARKUS GRASMAIR

Proof. Denote f(x) := 1
2∥x − z∥2. Since f is convex, a necessary and sufficient

condition for x∗ to be a global solution of minx∈Ω f(x) is that x∗ ∈ Ω and

⟨∇f(x∗), x− x∗⟩ ≥ 0

for all x ∈ Ω (see Proposition 1.4). Now ∇f(x∗) = x∗ − z, and thus the necessary
and sufficient optimality condition reads as

(6) ⟨x∗ − z, x− x∗⟩ ≥ 0

for every x ∈ Ω. That is, x∗ = πΩ(z), if and only if x∗ ∈ Ω and (6) holds, which
was to show. □

We now return to the problem (P ) of minimising an arbitrary function f over a
closed and convex set Ω and use the notion of a projection onto Ω to formulate yet
another characterisation of the solutions.

Proposition 2.4. Assume that x∗ is a solution of (P ). Then

(7) x∗ = πΩ

(
x∗ − α∇f(x∗)

)
for any α > 0.

Proof. Since x∗ solves (P ), it follows that

⟨∇f(x∗), x− x∗⟩ ≥ 0

for every x ∈ Ω. As a consequence,〈
x∗ − (x∗ − α∇f(x∗)), x− x∗〉 ≥ 0

for every x ∈ Ω. As shown in Proposition 2.3, however, this implies that x∗ is the
projection of x∗ − α∇f(x∗) onto Ω, or x∗ = πΩ(x

∗ − α∇f(x∗)). □

Remark 2.5. If f is convex, then it turns out that (7) is both a necessary and
sufficient condition for a solution of (P ). This readily follows from the fact that,
in this case, the variational inequality (3) is a necessary and sufficient optimality
condition according to Proposition 1.4.

Remark 2.6. Equation (7) implies that every local solution of (P ) is a fixed point
of the mapping G : Rd → Rd,

G(x) = πΩ

(
x− α∇f(x)

)
.

As a consequence, it seems reasonable to try to solve (P ) by means of the fixed
point iteration (the gradient projection method)

zk+1 ← xk − α∇f(xk),

xk+1 ← πΩ(zk+1).

Of course, this only makes sense if the projection on set Ω can be computed effi-
ciently. In this case, however, this can be a viable, though possibly slow, algorithm
for the solution of (P ). Indeed, one can show that this algorithm converges if f is a
strongly convex C1-function, and the step length α > 0 is chosen sufficiently small.

3. Optimisation with linear constraints

We now consider specifically the problem of minimising a function f with linear
constraints. That is, we assume that we are given a matrix A ∈ Rm×d and a vector
b ∈ Rm, and want to solve the problem

(L) min
x

f(x) s.t. Ax = b.

That is, the feasible set Ω is the affine set

Ω =
{
x ∈ Rd : Ax = b

}
.
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Now assume that x ∈ Ω, that is, that x solves Ax = b. Then it is easy to see that
a direction p ∈ Rd is feasible, if and only if A(x+ p) = b, that is, that

p ∈ kerA.

Note in particular, that the set of feasible vectors is symmetric in the sense that p
is feasible if and only if −p is feasible. As a consequence, we obtain immediately
the optimality condition: If x∗ solves (L), then Ax∗ = b and

⟨∇f(x∗), p⟩ = 0 for all p ∈ kerA.

In other words, we have the condition

∇f(x∗) ∈ (kerA)⊥.

However, this can be rewritten as a more useful condition: To that end, recall
that

(kerA)⊥ = RanAT .

In other words, a vector p is contained in (kerA)⊥, if and only if it can be written
as p = ATλ for some λ ∈ Rm. Thus we obtain the following optimality conditions
for (L):

Lemma 3.1. Assume that x∗ is a local solution of (L). Then there exists a Lag-
range multiplier λ∗ ∈ Rm such that

ATλ∗ = ∇f(x∗).

Conversely, if f is convex and there exists λ∗ ∈ Rm such that

ATλ∗ = ∇f(x∗),

Ax∗ = b,

then x∗ is a global solution of (L).

4. Concave inequality constraints

Finally, we will discuss the situation where the convex set Ω is the solution set
of a number of inequalities. That is, we are given functions ci : Rd → R, i ∈ I, for
some (finite) index set I and define

Ω =
{
x ∈ Rd : ci(x) ≥ 0, i ∈ I

}
.

Lemma 4.1. Assume that the functions ci : Rd → R are concave. Then the set Ω
is convex.

Proof. Assume that x, y ∈ Ω, and that 0 < λ < 1. Then the concavity of the
functions ci implies that

(8) ci(λx+ (1− λ)y) ≥ λci(x) + (1− λ)ci(y)

for all i ∈ I. Now the assumption that x, y ∈ Ω implies that ci(x), ci(y) ≥ 0.
Moreover, we have that λ, 1− λ ≥ 0. As a consequence, the right hand side in (8)
is non-negative, which in turn shows that

ci(λx+ (1− λ)y) ≥ 0

for all i ∈ I. This, however, shows that λx+(1−λ)y ∈ Ω, and thus Ω is convex. □

In order to obtain reasonable optimality conditions for optimisation problems
with concave inequality constraints, we have to impose additional restrictions on
the constraints that guarantee that the tangent and normal cones to Ω can be easily
described by means of the gradients of the constraints. In the general context of
constrained optimisation, such conditions are called “constraint qualifications.”
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Definition 4.2. We say that Slater’s constraint qualification is satisfied, if there
exists x̂ ∈ Rd such that

ci(x̂) > 0 for all i ∈ I.

In the following, we denote, for x ∈ Ω, by

A(x) :=
{
i ∈ I : ci(x) = 0

}
the set of active constraints.

Theorem 4.3. Assume that Slater’s constraint qualification holds and that x ∈ Ω.
Then

(9) TΩ(x) =
{
p ∈ Rd : ⟨p,∇ci(x)⟩ ≥ 0 for all i ∈ A(x)

}
.

Proof. Assume first that p ∈ TΩ(x). Theorem 1.7 (and the definition of feasible
directions) implies that there exist convergent sequences xk ⊂ Ω and tk > 0 such
that

p = lim
k→∞

tk(xk − x).

Moreover, we note that for every i ∈ A(x) we have

0 ≤ ci(xk) ≤ ci(x) + ⟨∇ci(x), xk − x⟩ = ⟨∇ci(x), xk − x⟩.
Thus

⟨p,∇ci(x)⟩ = lim
k→∞

tk⟨xk − x,∇ci(x)⟩ ≥ 0

for all i ∈ A(x). That is, every vector p ∈ TΩ(x) has the form given in (9).
Now assume that p ∈ Rd is such that ⟨p,∇ci(x)⟩ > 0 for all i ∈ A(x). Then

there exists t > 0 such that for all i ∈ I
ci(x+ tp) = ci(x) + t⟨p,∇ci(x)⟩+ o(t) > 0,

which implies that x + tp ∈ Ω. As a consequence, we can write such a vector p
as p = (x̃ − x)/t with x̃ = x + tp ∈ Ω. This shows that all vectors p ∈ Rd with
⟨p,∇ci(x)⟩ > 0 for all i ∈ A(x) are feasible directions at x.

Finally, let p ∈ Rd be such that ⟨p,∇ci(x)⟩ ≥ 0 for all i ∈ A(x). Let moreover
x̂ ∈ Ω be such that ci(x̂) > 0 for all i ∈ I (such a point exists because of Slater’s
constraint qualification) and define

pk := p+
1

k
(x̂− x).

Then

(10) ⟨∇ci(x), pk⟩ = ⟨∇ci(x), p⟩+
1

k
⟨∇ci(x), x̂− x⟩ ≥ 1

k
⟨∇ci(x), x̂− x⟩.

However, because of the concavity of ci we have that

0 < ci(x̂) ≤ ci(x) + ⟨∇ci(x), x̂− x⟩ = ⟨∇ci(x), x̂− x⟩
for all i ∈ A(x). Together with (10), this shows that

⟨∇ci(x), pk⟩ > 0

for all i ∈ A(x), which in turn shows that all the vectors pk are feasible directions
at x. As a consequence, p is the limit of a sequence of feasible directions at x. Using
Theorem 1.7, we obtain that p ∈ TΩ(x). □

Theorem 4.4 (Farkas’ Lemma). Let sj, j ∈ J , be a finite set of vectors in Rd,
and let g ∈ Rd. Then exactly one of the following statements is true:

(1) There exist λj ≥ 0, j ∈ J , such that∑
j∈J

λjsj = g.
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(2) There exists p ∈ Rd such that

⟨g, p⟩ < 0

and

⟨sj , p⟩ ≥ 0

for all j ∈ J .

Proof. See e.g. [2, Lemma 12.4] or [1, Sec. III.4.3]. □

Theorem 4.5. Assume that Slater’s constraint qualification holds and that x∗ is a
local solution of the problem (P ). Then there exists a Lagrange multiplier λ∗ ∈ RI

such that

(11)

∇f(x∗) =
∑
i∈I

λ∗
i∇ci(x∗),

λi ≥ 0, i ∈ I,
λi = 0, i ̸∈ A(x∗).

Conversely, if additionally f is convex and (11) holds, then x∗ is a global solution
of (P ).

Proof. Since x∗ is a local solution of the problem (P ), it follows that ⟨∇f(x∗), p⟩ ≥ 0
for all p ∈ TΩ(x

∗). Theorem 4.3 implies that this is equivalent to stating that
⟨∇f(x∗), p⟩ ≥ 0 for all p ∈ Rd with ⟨∇ci(x∗), p⟩ ≥ 0, i ∈ A(x∗). In other words,
there does not exist a vector p ∈ Rd such that ⟨∇f(x∗), p⟩ < 0 and ⟨∇ci(x∗), p⟩ ≥ 0
for all i ∈ A(x∗). Thus Theorem 4.4 implies that we can write

∇f(x∗) =
∑

i∈A(x∗)

λ∗
i∇ci(x∗)

for some λ∗
i ≥ 0, i ∈ A(x∗). Setting λ∗

i = 0 for i ∈ I \A(x∗), we obtain the desired
representation of ∇f(x∗).

The converse direction follows from the fact that the condition ⟨∇f(x∗), p⟩ ≥ 0
for all p ∈ TΩ(x

∗) is a sufficient optimality condition in the convex case. □

Remark 4.6. One can generalise these results to the case where Ω is given by
concave inequality constraints and linear equality and inequality constraints:

Ω =
{
x ∈ Rd : ci(x) ≥ 0, i ∈ I, and Ax ≥ b, Cx = d

}
,

with ci : Rd → R concave, A ∈ Rm×d, b ∈ Rm, C ∈ Rℓ×d, d ∈ Rℓ. In such a case,
Slater’s constraint qualification reads as: There exists x̂ ∈ Rd with ci(x̂) > 0, i ∈ I,
and Ax̂ ≥ b, Cx = d. Put differently, there exists a point x̂ that is feasible and
that satisfies all non-linear constraints with a strict inequality. If this condition is
satisfied, one can show (by essentially following the same argumentation as above)
that a necessary optimality condition is the existence of λ∗ ∈ RI , µ∗ ∈ Rm, and
ν∗ ∈ Rℓ such that

∇f(x∗) = ATµ∗ +BT ν∗ +
∑
i∈I

λ∗
i∇ci(x∗)

with λ∗
i ≥ 0 for all i ∈ I and λ∗

i = 0 whenever ci(x
∗) > 0, and µ∗

i ≥ 0 for all
i = 1, . . . ,m and µ∗

i = 0 whenever (Ax∗)i > 0.
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