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Up to now, we have discussed optimisation problems of the form minx∈Ω f(x),
where Ω ⊂ Rd was some feasible set and we were given a cost function f : Rd → R.
Our goal is to find the (an) optimal point x∗ ∈ Ω, that is, a point x∗ such that
f(x∗) ≤ f(x) for all other points x ∈ Ω.

In some situations, however, it can happen that we have different competing
interests at play at the same time. For instance, if we want to optimise the transport
of goods, we have the two objectives of transport time and transport cost, and
we would like to transport the goods as fast and as cheaply as possible. Since
faster transportation usually is more expensive, this is in general not possible,
though. The goal of this note is to develop a notion of solutions of these multi-
criteria optimisation problems and also discuss a possible solution approach. More
information about this topic can, for instance, be found in the books [2, 3].

1. Partial Orders and Cones

We start by looking at the multi-criteria optimisation problem in a more abstract
setting.

Definition 1.1. Assume that S is a set. A partial order on S is a subset P ⊂ S×S
with the following properties:

• Reflexivity: (s, s) ∈ P for all s ∈ S.
• Anti-symmetry: If (s, t) ∈ P and (t, s) ∈ P , then s = t.
• Transitivity: If (s, t) ∈ P and (t, u) ∈ P , then (s, u) ∈ P .

A pair (S, P ), where P is a partial order on S is called a partially ordered set (or
poset).

Typically, we indicate a partial order P on S by the symbol ⪯, saying that s is
smaller than t or

s⪯ t ⇐⇒ (s, t) ∈ P.

Then the conditions for a partial order can be restated in the following, more
familiar form:

• Reflexivity: s⪯ s for all s ∈ S.
• Anti-symmetry: If s⪯ t and t⪯ s, then s = t.
• Transitivity: If s⪯ t and t⪯ u, then s⪯ u.

Given a partially ordered set (S,⪯) and elements s, t ∈ S, we say that s is
strictly smaller than t, denoted s≺ t, if s⪯ t and s ̸= t.

Remark 1.2. A partially ordered set (S,⪯) is called totally ordered, if all elements
are comparable, that is, for each s ̸= t ∈ S we either have s≺t or t≺s. For instance,
the set R of real numbers is totally ordered.

If s and t are elements of a totally ordered set and s is not smaller than t, in
symbols s⪯̸ t, then we can immediately conclude that t⪯ s. For a general partially
ordered set, however, this is not the case.
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Example 1.3. On Rn we can consider the standard, or componentwise, partial
order x⪯ y, if and only if xi ≤ yi for all 1 ≤ i ≤ n. This is indeed a partial order,
as the following considerations show:

• If x ∈ Rn, then, trivially, xi ≤ xi for each i, which implies that x⪯ x.
• If x⪯ y and y ⪯ x, then xi ≤ yi and yi ≤ xi for each i, which implies that

xi = yi for each i. Thus x = y.
• If x⪯ y and y ⪯ z, then we have for each i that xi ≤ yi and yi ≤ zi, which

implies that xi ≤ zi for each i. Thus we also have that x⪯ z.

In dimensions n ≥ 2, this is not a total order. For instance, the vectors e1 =
(1, 0, 0, . . .) and e2 = (0, 1, 0, . . .) are not comparable; neither of the inequalities
e1 ⪯ e2 or e2 ⪯ e1 holds.

When nothing else is specified, we will always consider the space Rn with this
partial order.

Example 1.4. Let E be any set and denote by P(E) the power set of E, that is,
the set of all sub-sets of E. Then the inclusion ⊆ defines a partial order on P(E):

• For every U ∈ P(E) we have U ⊆ U .
• If U , V ∈ P(E) satisfy U ⊆ V and V ⊆ U , then U = V .
• IF U , V , W ∈ P(E) satisfy U ⊆ V and V ⊆ W , then also U ⊆ W .

Unless E is empty or contains only one element, the relation ⊆ does not define a
total order: If u ̸= v ∈ E, then neither of the inclusions {u} ⊆ {v} or {v} ⊆ {u}
holds, and thus the sets {u} and {v} are not comparable.

Example 1.5. Let d ≥ 2 and S :=
{
A ∈ Rd×d : A = AT

}
the set of (real)

symmetric matrices of dimension d× d. The relation A⪯B if and only if B −A is
positive semi-definite defines a partial order on S.

If the space S in addition is a vector space, we normally would expect a partial
order to be compatible with the vector space structure. This is captured in the
following definition.

Definition 1.6. Assume that U is a real vector space and that ⪯ is a partial
order on U . We say that (U,⪯) is an ordered vector space, if (in addition to the
requirements for a partial order) the following conditions hold:

• Assume that u, v ∈ U satisfy u⪯v and that w ∈ U . Then also u+w⪯v+w.
• Assume that u, v ∈ U satisfy u⪯ v and that λ ∈ R with λ ≥ 0. Then also

λu⪯ λv.

It turns out that there is a close connection between partial orders on ordered
vector spaces and convex cones: In an ordered vector space (U,⪯) we can consider
the set of non-negative elements C :=

{
u ∈ U : 0 ⪯ u

}
, which turns out to be a

convex cone if the order structure is compatible with the vector space structure on
U . Conversely, given a convex cone we can (under a small additional condition)
always interpret it is the non-negative cone for a partial order on U . The precise
relationship between partial orders and convex cones is given in the following result.

Lemma 1.7. Assume that U is an ordered vector space and denote

C :=
{
u ∈ U : 0⪯ u

}
.

Then C is a convex cone, that is, C has the following properties:

• If u, v ∈ C, then also λu+ (1− λ)v ∈ C for all λ ∈ R with 0 < λ < 1.
• If u ∈ C, and if λ ∈ R satisfies λ ≥ 0, then λu ∈ C.

In addition, C satisfies C ∩ (−C) = {0}. Moreover, for u, v ∈ U we have that u⪯v
if and only if v − u ∈ C.
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Conversely, if C ⊂ U is a non-empty convex cone satisfying C ∩ (−C) = {0},
then the relation u ⪯ v if and only if v − u ∈ C makes (U,⪯) an ordered vector
space.

Proof. Assume that u, v ∈ C and that λ ∈ R with 0 < λ < 1. Then 0⪯u and 0⪯v.
Because λ > 0 and 1− λ > 0, we therefore also have that 0⪯ λu and 0⪯ (1− λ)v.
As a consequence, we have that (1−λ)v = 0+(1−λ)v⪯λu+(1−λ)v, and therefore
0⪯ (1− λ)v ⪯ λu+ (1− λ)v.

Next assume that u ∈ C and that λ ∈ R satisfies λ ≥ 0. Then 0 ⪯ u and thus
also 0 = λ 0⪯ λu, which shows that λu ∈ C.

Next, assume that u, v ∈ U . Then the inequality u ⪯ v implies that 0 = u −
u ⪯ v − u and thus v − u ∈ C. Conversely, if v − u ∈ C, then 0 ⪯ v − u and thus
u = 0 + u⪯ v − u+ u = v.

Finally, let v ∈ C ∩ {−C} or, equivalently, v ∈ C and −v ∈ C. Then 0⪯ v and
0⪯−v, the latter implying that v⪯ 0. Therefore v = 0 and thus C ∩{−C} = {0}.

Now assume that C ⊂ U is a non-empty convex cone and the the relation ⪯
is defined by u ⪯ v ⇐⇒ v − u ∈ C. Since by assumption 0 ∈ C, we have that
u− u ∈ C for all u ∈ U , which shows that u⪯ u.

Next, assume that u ⪯ v and v ⪯ u. Then v − u ∈ C and u − v ∈ C and thus
v − u ∈ C ∩ (−C) = {0}. In other words, u = v.

Finally, assume that u⪯ v and v⪯w, that is v− u ∈ C and w− v ∈ C. Since C
is a convex cone, we also have that

w − u = 2
(1
2
(w − v) +

1

2
(v − u)

)
∈ C,

showing that u⪯ w.
We have thus shown that ⪯ defines a partial order on U . It remains to show

that this order is compatible with the vector space structure. To that end, assume
that u⪯v and w ∈ U . Then (w+v)− (w+u) = v−u ∈ C since C is a convex cone
, and thus u+w⪯v+w. Moreover, if u⪯v and λ ≥ 0, then λv−λu = λ(v−u) ∈ C
since C is a cone, and thus λu⪯ λv. □

Example 1.8. The standard order on Rn is given by the cone C := Rn
≥0 (see

Figure 1 for an illustration).
The order on the space of symmetric matrices discussed in Example 1.5 is defined

by the cone of positive semi-definite matrices.

x

x+ C

Figure 1. Illustration of the order relation in R2. The blue area
indicates all points y ∈ R2 that satisfy x⪯ y. This is the same as
the set x + C, where C is the non-negative cone C =

{
y ∈ R2 :

0⪯ y
}
.
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2. Pareto-optimality

Definition 2.1. Assume that X is some set, (Y,⪯) is a partially ordered set and
that f : X → Y is some function. A point x∗ ∈ X is called efficient or Pareto-
optimal for f , if there does not exist any x ∈ X such that f(x)≺ f(x∗).

The Pareto-front is the set of all Pareto-optimal points for f .

We consider now the case where f : Ω ⊂ Rd → Rn is a vector function, and we
consider the problem

(1) min
x∈Ω

f(x),

where we assume the standard order on Rn. In this case, the definition of Pareto-
optimality can be reformulated as the following:

Definition 2.2. Assume that f : Ω ⊂ Rd → Rn, where Rn is equipped with the
standard order. A point x∗ ∈ Ω is called efficient or Pareto-optimal for the prob-
lem (1), if there does not exist any x ∈ Ω such that fi(x) ≤ fi(x

∗) for all 1 ≤ i ≤ n,
and fk(x) < fk(x

∗) for some 1 ≤ k ≤ n.

Put differently, it is not possible to improve the value of one of the component
functions fi without making another one worse. In other words, x∗ is Pareto-
optimal if and only it solves for each 1 ≤ k ≤ n the optimisation problem

min
x

fk(x) s.t. fi(x) ≤ fi(x
∗) for all i ̸= k.

Remark 2.3. Given a partially ordered set (S,⪯) and a subset U ⊂ S, we say that
s ∈ U is a minimal element of U if there does not exist any t ∈ U with t≺ s. Using
this notion of minimality, we can also say that the Pareto-optimal solutions of the
problem minx∈Ω f(x) for a function f : Ω → S are precisely those points x∗ ∈ Ω for
which f(x∗) is a minimal element of the image f(Ω) =

{
f(x) ∈ S : x ∈ Ω

}
of Ω.

In the literature on multicriteria optimisation, this image of the Pareto-front is
often identified with the Pareto-front itself. In this lecture, however, we will not
follow this convention and consider the Pareto-front only as subset of the definition
space of the function f , not of its image.

Example 2.4. Consider the functions f1, f2 : [0, 1]
2 → R,

f1(x, y) = x+ y,

f2(x, y) = 2− x2 − y2.

Since we can write

f2(x, y) = 2− x2 − y2 = 2− 1

2
(x+ y)2 − 1

2
(x− y)2,

we see that for a fixed value of f1(x, y) = x + y, the function f2(x, y) is minimal
when the difference |x− y| is the largest. For 0 ≤ x+ y ≤ 1, this happens precisely
when x = 0 or y = 0; for 1 ≤ x + y ≤ 2, this happens precisely when x = 1 or
y = 1. Put differently, the Pareto-front of this problem consists of the points (0, y),
(x, 0), (1, y), and (x, 1), with 0 ≤ x, y ≤ 1.

Alternatively, we can consider the image

f([0, 1]2) =
{
(x+ y, 2− x2 − y2) : 0 ≤ x, y ≤ 1

}
⊂ R2

of the function f = (f1, f2), which is depicted in Figure 2. The image of the
Pareto-front consists of the minimal elements of f([0, 1]2), that is, the “lower left
boundary” of the set f([0, 1]2).
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x+ y

2− x2 − y2

Figure 2. Illustration of the Pareto-front for the problem
min0≤x,y≤1 f(x, y) with f1(x, y) = x+y and f2(x, y) = 2−x2−y2.
The blue area is the image of f , that is, the set

{
f(x, y) : 0 ≤

x, y ≤ 1
}
, and the red line shows the minimal elements in the im-

age of f .

3. The Weighted Sum Method

We consider again the problem (1) with f : Rd → Rn and the standard order
on Rn. Our goal is to devise a method for actually computing Pareto-optimal
solutions of multi-criteria optimisation problems. The approach we are chosing is
that of scalarisation, where one transforms the multi-criteria problem into a family
of standard optimisation problems, the solutions of which should coincide with
Pareto-optimal solutions of (1). More specifically, we consider the idea of weighted
sum scalarisation, where these optimisation problems are just a weighted sum of
the component functions fi. We will show in the following first that the solutions of
these weighted sums are indeed Pareto-optimal. Then we will turn to the question
whether it is possible to obtain the whole Pareto-front with this approach, or if we
are missing some Pareto-optimal solutions.

Theorem 3.1. Let λi > 0, 1 ≤ i ≤ n, and let x∗
λ be a solution of the optimisation

problem

(2) min
x∈Ω

n∑
i=1

λifi(x).

Then x∗
λ is a Pareto-optimal solution of (1).

Proof. Assume to the contrary that x∗
λ is not Pareto-optimal. Then there exists

y ∈ Ω such that f(y) ≺ f(x∗
λ). That is, fi(y) ≤ fi(x

∗
λ) for all 1 ≤ i ≤ n and there

exists some k such that fk(y) < fk(x
∗
λ). As a consequence, since λi > 0 for all

1 ≤ i ≤ n,

(3)

n∑
i=1

λifi(y) = λkfk(y)+
∑
i ̸=k

λifi(x
∗
λ) < λkfk(x

∗
k)+

∑
i ̸=k

λifi(x
∗
λ) =

n∑
i=1

λifi(x
∗
λ),

which shows that x∗
λ is no solution of (2). This shows that, in fact, x∗

λ must be
Pareto-optimal. □

This result shows that we can construct at least part of the Pareto-front by
taking all possible combinations of weights λi > 0 and computing the solutions x∗

λ

of the corresponding weighted sum problem (2). In practice, of course, one would
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rather take a sufficiently fine discretisation of the set of weights. Also, it is sufficient
to take weights λi such that

∑
i λi = 1, as multiplying all weights with the same

(positive) number does not change the solution.

Remark 3.2. In Theorem 3.1, we have assumed that all the weights λi are strictly
larger than zero. This is necessary in order to conclude that the inequality in (3)
is strict: In the case λk = 0, we would only have that the left hand side is smaller
or equal to the right hand side, and therefore would not obtain a contradiction to
the assumption that x∗

λ solves (2).
As a (trivial) example where the positivity of the parameters λi is necessary,

consider the case of two functions f1, f2 with f1(x) = 0 for all x. Then the Pareto-
optimal solutions of minx(f1(x), f2(x)) are precisely the (standard) minimisers of
the function f2, because f1 does not add any restrictions. These same points are
obtained by solving (2) for any weights λ1 ≥ 0 and λ2 > 0. With weights λ1 > 0
and λ2 = 0, however, we simply obtain the function λ1f1(x) + 0 = 0, which has as
minimisers the whole set Ω. If we were to allow a weight to be equal to 0, we thus
would obtain solutions of (2) that are not Pareto-optimal.

The next natural question is, whether the weighted sum method allows us to
obtain all Pareto-optimal solution of the multi-criteria problem. Unfortunately,
the answer to this question is in general no, as the following example shows.

Example 3.3. We consider again the functions f1, f2 : [0, 1]
2 → R from Ex-

ample 2.4, that is,

f1(x, y) = x+ y,

f2(x, y) = 2− x2 − y2.

Let now λ1, λ2 > 0, and consider the weighted sum problem

(4) min
x, y∈[0,1]

(
λ1f1(x, y) + λ2f2(x, y)

)
.

Since f1 is affine, f2 is strictly concave, and λ2 > 0, it follows that the objective
function of this problem is strictly concave as well. Thus the only potential solutions
of the problem (4) are the vertices of the polyhedron [0, 1]2, that is, the points (0, 0),
(0, 1), (1, 0), and (1, 1).

In fact, if we compute the function values of the weighted sum λ1f1 + λ2f2, we
see that the solution of (4) is equal to (1, 1) for λ2 > λ1 and equal to (0, 0) for
λ1 < λ2, and for λ1 = λ2 > 0 all the points (0, 0), (0, 1), (1, 0), and (1, 1) are global
solutions of (4). However, it is not possible to obtain any other Pareto-optimum
by minimising a function of the form λ1f1 + λ2f2 with λ1, λ2 > 0.

We will now show that the situation is better in the case where all the involved
functions are convex. For that, we will need a result that is related to Farkas’
lemma, which we have seen earlier when deriving the KKT conditions.

Theorem 3.4 (Gordan’s Theorem). Assume that gi ∈ Rd, 1 ≤ i ≤ n. Then
precisely one of the two following alternatives is true:

(1) There exist λi ≥ 0, 1 ≤ i ≤ n, with
∑

i λi = 1 such that

(5)

n∑
i=1

λigi = 0.

(2) There exists p ∈ Rd such that

⟨gi, p⟩ < 0 for all 1 ≤ i ≤ n.
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Proof. We follow the proof in [1, Thm. 2.2.1].
First assume that (1) holds and let λi ≥ 0, 1 ≤ i ≤ n, with

∑
i λi = 1 be such

that
∑

i λigi = 0. Then we have for every p ∈ Rd that

n∑
i=1

λi⟨gi, p⟩ = 0,

and thus it is impossible that ⟨gi, p⟩ < 0 for all i. In other words, if (1) holds, then
(2) cannot hold at the same time.

Now let us assume that (2) does not hold. Our goal is to show that, in this case,
(1) necessarily holds. To that end, we define the function f : Rd → R,

f(p) = ln
( n∑
i=1

exp
(
⟨gi, p⟩

))
.

Since (2) does not hold, there exists for all p ∈ Rn some k such that ⟨gk, p⟩ ≥ 0.
Then, since ln is monotonically increasing and exp(t) > 0 for all t,

f(p) = ln
( n∑
i=1

exp
(
⟨gi, p⟩

))
≥ ln

(
exp

(
⟨gk, p⟩

))
≥ 0.

For ε > 0 we now define the function f (ε) : Rd → R,

f (ε)(p) := f(p) +
ε

2
∥p∥22,

and consider the problem

min
p∈Rd

f (ε)(p).

Since f(p) ≥ 0 for all p, it follows that f (ε)(p) ≥ ε∥p∥22/2 for all p, and thus f (ε) is
coercive. Therefore, this problem attains a minimiser p(ε) ∈ Rd. Moreover we can
estimate

ε

2
∥p(ε)∥22 ≤ f (ε)(p(ε)) ≤ f (ε)(0) = f(0) = ln(n)

for all ε > 0, which in particular implies that

lim
ε→0

ε∥p(ε)∥2 = lim
ε→0

√
ε
√
ε∥p(ε)∥22 ≤ lim inf

ε→0

√
ε
√

ln(n) = 0.

Moreover, we have ∇f(p(ε)) = 0, that is,

0 = ∇f (ε)(p(ε)) =

n∑
i=1

exp
(
⟨gi, p(ε)⟩

)∑n
j=1 exp

(
⟨gj , p(ε)⟩

)gi + εp(ε)

Now define

λ
(ε)
i :=

exp
(
⟨gi, p(ε)⟩

)∑n
j=1 exp

(
⟨gj , p(ε)⟩

) .
Then λ

(ε)
i ≥ 0 for all i and ε, and

∑
i λ

(ε)
i = 1 for all ε > 0. As a consequence,

there exist a sequence εk → 0 and λi ≥ 0 with
∑

i λi = 1 such that

λ
(εk)
i → λi

for all i. Moreover,∥∥∥∑
i

λigi

∥∥∥
2
= lim

k→∞

∥∥∥∑
i

λ
(εk)
i gi

∥∥∥
2
= lim

k→∞

∥∥εkp(εk)∥∥2 = 0.

Thus (5) holds.
Altogether, we have now shown that (1) holds, if and only if (2) does not hold,

which is precisely the claim of the theorem. □
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Now we return to our investigation of the weighted sum method for the com-
putation of the Pareto-front, but we restrict ourselves to the case where all of the
functions fi are convex and differentiable. Moreover, for simplicity, we consider
only the unrestricted case Ω = Rd. It is possible, though, to extend these results to
the case where the functions fi are not necessarily differentiable (but still convex)
and the set Ω is convex, although the proof for that general setting is somewhat
more technical.

The first result states that every Pareto-optimal solution of the multi-criteria
problem can be obtained by minimising some weighted sum problem, provided
that the functions fi are convex and we are allowed to set some of the weights to 0.

Theorem 3.5. Assume that the functions fi : Rd → R, 1 ≤ i ≤ n, are convex and
differentiable, and assume that x∗ is a Pareto-optimal solution of the problem

(6) min
x∈Rd

f(x).

Then there exist weights λi ≥ 0, 1 ≤ i ≤ n, with
∑

i λi = 1 such that x∗ solves

(7) min
x∈Rd

n∑
i=1

λifi(x).

Proof. Since x∗ is a Pareto-optimal solution of (6), there exists no x̂ ∈ Rd such
that fi(x̂) ≤ fi(x

∗) for all i and fk(x̂) < fk(x
∗) for at least one k. A forteriori,

there exists no x̂ ∈ Rd such that fi(x̂) < fi(x
∗) for all 1 ≤ i ≤ n.

Next we will show that this implies that there does not exist any p ∈ Rd such
that ⟨∇fi(x

∗), p⟩ < 0 for all 1 ≤ i ≤ n. Indeed, were such a p to exist, it would
be a descent direction for all functions fi at x

∗, and thus we could find for each i
some εi > 0 such that fi(x

∗ + tp) < fi(x
∗) for all 0 < t < εi. Setting t := 1

2 mini εi
and x̂ = x∗ + tp, we would thus obtain that fi(x̂) = fi(x

∗ + tp) < fi(x
∗) for all i,

which would contradict our previous statement.
Since there does not exist any p such that ⟨∇fi(x

∗), p⟩ < 0 for all 1 ≤ i ≤ n, the
first alternative in Gordan’s Theorem has to be true. That is, there exist λi ≥ 0,
1 ≤ i ≤ n, with

∑
i λi = 1 such that∑

i

λi∇fi(x
∗) = 0.

This, however, implies that x∗ is a critical point of the function

x 7→
∑
i

λifi(x).

Since this function is convex, every critical point is already a global solution. This
shows that x∗ solves (7) for these weights. □

Finally, if we replace convexity with strict convexity of the functions fi, we
obtain a one-to-one correspondance between the Pareto-optimal solutions of the
multi-criteria problem and the solutions of the weighted sum problem.

Theorem 3.6. Assume that the functions fi : Rd → R are strictly convex and
differentiable. Then x∗ ∈ Rd is a Pareto-optimal solution of

min
x∈Rd

f(x)

if and only if there exist weights λi ≥ 0, 1 ≤ i ≤ n, with
∑

i λi = 1 such that x∗

solves

(8) min
x∈Rd

n∑
i=1

λifi(x).
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Proof. The “only if” part has already been shown in Theorem 3.5. Assume therefore
that x∗ solves (8) for some λi ≥ 0 with

∑
i λi = 1 and that x ̸= x∗. Because of the

strict convexity of the functions fi, it follows that
∑

i λifi is strictly convex as well
and thus the minimiser of this function is unique. Therefore

n∑
i=1

λifi(x
∗) <

n∑
i=1

λifi(x).

Thus there exists at least one index i such that λifi(x
∗) < λifi(x), which in turn

implies that fi(x
∗) < fi(x). Thus we cannot have that x≺ x∗. Since this holds for

every x ̸= x∗, it follows that x∗ is Pareto-optimal. □

To summarise, we have obtained the following results:

• If x∗ is a solution of some weighted sum problem where all the weights are
positive, then it is a Pareto-optimum.

• If the functions fi are convex and x∗ is a Pareto-optimum then there ex-
ist non-negative parameters λi, with at least one of them being strictly
positive, such that x∗ solves the corresponding weighted sum problem.

• If the functions fi are strictly convex, then x∗ is a Pareto-optimum if and
only if there exist non-negative parameters λi, with at least one of them
being strictly positive, such that x∗ solves the corresponding weighted sum
problem.
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