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CHAPTER

ONE

RELEVANT CONCEPTS FROM FUNCTIONAL ANALYSIS

Vector space A definition can be found on wiki.
Metric space A metric space is a set 𝑋 which is equipped with a distance function (or metric)𝑑(𝑥, 𝑦) ∶ 𝑋 × 𝑋 → .
Complete metric space A metric space is called complete if every Cauchy sequence converges to some 𝑥 ∈ 𝑋.
Normed vector space A vector space (𝑉 , ‖ ⋅ ‖𝑉 ) consist of a vector space 𝑉 which is equipped with a norm‖ ⋅ ‖𝑉 ∶ 𝑉 →
Note that every norm induces a natural metric 𝑑(𝑥, 𝑦) ∶= ‖𝑥 − 𝑦‖𝑉 . Typically we do not use the verbose notation(𝑉 , ‖ ⋅ ‖𝑉 ), instead we simply speak of a normed vector space 𝑉 , and we omit the subscript 𝑉 in the norm symbol when
the norm is clear from the context.
Banach space A normed vector space which is complete with respect to the induced metric.
Inner product space An inner product space (𝑉 , (⋅, ⋅))𝑉 is a real (or complex) vector space 𝑉 equipped with a inner

product (⋅, ⋅)𝑉 ∶ 𝑉 × 𝑉 → (or ℂ)
Every inner product induces a natural norm ‖ ⋅ ‖ ∶= √(⋅, ⋅), and thereby a metric. Again, we typically do not use the
verbose notation (𝑉 , (⋅, ⋅)), instead we simply speak of a inner product space 𝑉 , and we often omit the subscript 𝑉 in(⋅, ⋅)𝑉 symbol when the inner product is clear from the context.
Inner products satisfy the Cauchy-Schwarz inequality:(𝑢, 𝑣)𝑉 ⩽ ‖𝑢‖𝑉 ‖𝑣‖𝑉 .
Bounded linear operator A linear operator 𝐿 ∶ 𝑉 → 𝑊 between two normed vector spaces (𝑉 , ‖ ⋅ ‖𝑉 ) and (𝑊, ‖ ⋅ ‖𝑊 )

is call bounded if there is a constant 𝐶 ∈ +0 such that‖𝐿𝑣‖𝑊 ⩽ 𝐶‖𝑣‖𝑉 .
The operator norm ‖𝐿‖𝑉 →𝑊 of 𝑇 is then the smallest such constant given by‖𝐿‖ = inf{𝐶 ∈ +0 ∶ ‖𝐿𝑣‖𝑊 ⩽ ‖𝑣‖𝑉 ∀𝑣 ∈ 𝑉 }= sup𝑣∈𝑉 �{0} ‖𝐿𝑣‖𝑊‖𝑣‖𝑉= sup𝑣∈𝑉 ,‖𝑣‖𝑉 =1 ‖𝐿𝑣‖𝑊 .
It can be shown that the the following statements are equivalent for linear operators:

• 𝐿 ∶ 𝑉 → 𝑊 is bounded
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• 𝐿 ∶ 𝑉 → 𝑊 is continuous

Exercise 1
Before you look up the proof, try to prove the previous claim yourself.

A linear operator 𝑙 ∶ 𝑉 → (or ℂ) is often called a linear functional or a linear form on 𝑉 .
Dual space The dual space 𝑉 ∗ for a normed vector space (𝑉 , ‖ ⋅ ‖) consist of all continuous linear functionals defined

on 𝑉 .
Note that for inner product spaces 𝑉 , every 𝑢 ∈ 𝑉 give rise to a continuous linear functional 𝑙𝑢 defined by𝑙𝑢(𝑣) ∶= (𝑣, 𝑢)𝑉 ∀𝑣 ∈ 𝑉 .
For Hilbert space𝐻 , that is in essence all the continuous linear functionals you can construct on𝐻 thanks to the following
theorem.
Riesz representation theorem

Theorem 1 (Riesz representation theorem)
Let 𝐻 be a Hilbert space with a inner product (⋅, ⋅). Then for every continuous functional 𝑙 ∶ 𝐻 → , there is a unique
vector 𝑢𝑙 ∈ 𝐻 such that 𝑙(𝑣) = (𝑣, 𝑢𝑙) ∀𝑣 ∈ 𝐻,
and we have that ‖𝑙𝑢‖𝑉 ∗ = ‖𝑢‖𝑉 .
Proof. For a proof, we refer to Section 5.2 in [Brezis, 2011].

Later, when we have introduced the concept of weak formulation of partial differential equations, we will make heavily
use of the Lax-Milgram theorem.

Theorem 2 (Lax-Milgram)
Given a Hilbert space (𝑉 , ‖ ⋅ ‖), a bilinear form 𝑎(⋅, ⋅) ∶ 𝑉 × 𝑉 → (or ℂ), and a linear form 𝑙(⋅) ∶ 𝑉 → (or ℂ).
Then the problem: Find 𝑢 ∈ 𝑉 such that 𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝑉 (1.1)

possesses solution a solution 𝑢 ∈ 𝑉 if the following assumptions are satisfied.
1. The linear form 𝑙 is bounded, i.e. there exists a constant 𝐶𝑙 ⩾ 0 such that|𝑙(𝑣)| ⩽ 𝐶𝑙‖𝑣‖ ∀𝑣 ∈ 𝑉 . (1.2)

2. The bilinear form 𝑎 is bounded, i.e. there exists a constant 𝐶𝑎 ⩾ 0 such that|𝑎(𝑣, 𝑤)| ⩽ 𝐶𝑎‖𝑣‖‖𝑤‖ ∀𝑣, 𝑤 ∈ 𝑉 . (1.3)
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3. The bilinear form 𝑎 is coercive, i.e. there is a constant 𝛼 > 0 such that𝑎(𝑣, 𝑣) ⩾ 𝛼‖𝑣‖2 ∀𝑣 ∈ 𝑉 . (1.4)

Moreover, the solution 𝑢 satisfies the stability (or a priori) estimate‖𝑢‖ ⩽ 𝐶𝑙𝛼 (1.5)

and is (therefore!) uniquely defined.

Proof. For a complete proof in particular the existence of a solution 𝑢, we refer to the nice presentation in [Evans, 2010].
Here, we only show to derive (1.5) and uniqueness of 𝑢.
Assume 𝑢 solves (1.1). Then set 𝑣 = 𝑢 and successively employ the coercivity of 𝑎 and boundedness of 𝑙 to see that𝛼‖𝑢‖2 ⩽ 𝑎(𝑢, 𝑢) = 𝑙(𝑢) ⩽ 𝐶𝑙‖𝑢‖.
Dividing the previous chain of inequalities by 𝛼 and ‖𝑢‖ if ‖𝑢‖ ≠ 0 yields (1.5). For ‖𝑢‖ = 0 the stability estimate is
trivially satisfied.
If 𝑢1 and 𝑢2 both satisfy problem (1.1), then thanks to linearity of 𝑎 in the first slot, the difference 𝑢1 − 𝑢2 satisfies
problem~(1.1) but with 𝑓 = 0 instead. In that case 𝐶𝑙 = 0 and thus 0 ⩽ ‖𝑢1 − 𝑢2‖ ⩽ 0𝛼 = 0, and thus 𝑢1 = 𝑢2.
Remark 1
The Lax-Milgram theorem ensures that problem (1.1) is well-posed, i.e.,

• Existence of a solution
• Uniquessness of the solution
• Continuous dependency on the data (or Stability) of the solution. In the particular case of Lax-Milgram theorem,
stability is guaranteed through (1.5) which implies that “small changes” in 𝑎 and 𝑙 will only lead to small changes
in the solution 𝑢.
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CHAPTER

TWO

A BRIEF REVIEW ON FUNCTION SPACES

In this chapter we collect some results on various function space we will use throughout the book. One essential property
of many function space we will consider is that they are complete, i.e. they are either Banach or Hilbert space, see Section
Relevant concepts from functional analysis.

Note: This section barely scratches at the surface of the topic, we will only summarize (and not even prove) the most
essential results we need later one in this course.
Also, this chapter will be a work in progress during the entire course, as we will add relevant results here whenever we
need them elsewhere.

2.1 Measure and integration theory, Lebesque spaces

Lebesque integration theory provides a powerful generalization of the Riemann integral which makes sure that the set
of so-called Lebesque-integrable functions turns into a Banach space when endowed with a suitable norm. Nowdays, in
most standard text books, Lebesque integration theory is presented as part of the curriculum onMeasure and Integration
theory, see Chapter 9-10 in [Browder, 2012] for a quick introduction. To this end,

Definition 1 (Lebesque spaces)
Let Ω ⊂ 𝑛 be a open domain.
Then the Lebesque spaces 𝐿𝑝(Ω) are defined by𝐿𝑝(Ω) = {𝑓 ∶ Ω → is measurable and ‖𝑓‖𝐿𝑝(Ω) < ∞}. (2.1)

Here, the 𝐿𝑝-norm ‖ ⋅ ‖𝐿𝑝(Ω) is defined by
‖𝑓‖𝐿𝑝(Ω) ∶= ⎧{⎨{⎩(∫Ω |𝑓(𝑥)|𝑝 d𝑥)1/𝑝 1 ⩽ 𝑝 < ∞

ess supΩ |𝑢| 𝑝 = ∞ (2.2)

Sometimes we write ‖𝑓‖𝑝,Ω instead of ‖𝑓‖𝐿𝑝(Ω). A function 𝑓 ∈ 𝐿𝑝(Ω) is often called 𝐿𝑝-integrable.
We also introduce the space of locally 𝐿𝑝-integrable functions on Ω; that is, functions that are 𝐿𝑝 integrable on every
compact subset 𝐾 ⋐ Ω, 𝐿𝑝

loc(Ω) = {𝑓 ∶ Ω → |𝑓 ∈ 𝐿𝑝(𝐾) ∀𝐾 ⋐ Ω}. (2.3)

9
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TODO
Introduce inner product on 𝐿2.
Lemma 1 (Determining uniqueness through testing)
Let 𝑢1, 𝑢2 ∈ 𝐿1

loc(Ω) and assume that ∫Ω(𝑢1 − 𝑢2)𝜙 d𝑥 = 0 ∀𝜙 ∈ 𝐶∞𝑐 (Ω).
Then 𝑢1 = 𝑢2 almost every in Ω; that is, up to set of measure 0.
Remark 2
In this setting, 𝜙 is typically called a test function. When determining whether two functions are equal, the previous lemma
roughly states that you can do this by comparing their “actions” on suitable test functions 𝜙 instead of comparing their
values at (almost) every point.
Here, the “action” is simply the resulting number computed from multiplying the functions in question with the test
function 𝜙 and integrating over Ω.
2.2 Sobolev spaces

2.2.1 Weak derivatives

Let start with a motivating example. Let 𝑢 ∈ 𝐶𝑘(Ω) and 𝜙 ∈ 𝐶∞𝑐 (Ω). Using Green’s theorem and taking into account
that 𝜙 = 0 on a open neighborhood of the boundary of Ω, we see that∫Ω 𝜕𝑥𝑖𝑢𝜙 d𝑥 = − ∫Ω 𝑢𝜕𝑥𝑖𝜙 d𝑥, (2.4)

and iterating this formula, we observe that for any multiindex 𝛼 ∈ 𝑛 with 𝛼 ⩽ 𝑘, it holds that∫Ω 𝜕𝛼𝑢𝜙 d𝑥 = (−1)|𝛼| ∫Ω 𝑢𝜕𝛼𝜙 d𝑥, (2.5)

where |𝛼| = 𝛼1 + ⋯ 𝛼𝑛. Note that the integral expression on the right-hand side of (2.5) makes perfectly sense even
for 𝑢 ∈ 𝐿1

loc and not only 𝑢 ∈ 𝐶𝑘(Ω). This leads to a possibility to generalize or weakened the classical definition of
derivatives.

Definition 2 (Weak derivative)
Let 𝛼 ∈ 𝑛 be a multiindex and 𝑢, 𝑢𝛼 ∈ 𝐿1

loc(Ω). We say that 𝑢𝛼 is 𝛼-th weak derivative of 𝑢 if∫Ω 𝑢𝛼𝜙 d𝑥 = (−1)|𝛼| ∫Ω 𝑢𝜕𝛼𝜙 d𝑥
holds for all 𝜙 ∈ 𝐶∞𝑐 (Ω).
10 Chapter 2. A brief review on function spaces
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Lemma 2 (Uniqueness of weak derivatives)
If 𝑢 ∈ 𝐿1

loc(Ω) possesses an 𝛼-th weak derivative, it is uniquely defined in 𝐿1
loc(Ω).

Proof. For two weak derivatives 𝑢𝛼 and 𝑢̃𝛼 we have that∫Ω 𝑢𝛼𝜙 = (−1)|𝛼| ∫Ω 𝑢𝜕𝛼𝜙𝑑𝑥 (2.6)∫Ω 𝑢̃𝛼𝜙 = (−1)|𝛼| ∫Ω 𝑢𝜕𝛼𝜙𝑑𝑥 (2.7)

and by substracting the second from the first inequality, we obtain that∫Ω(𝑢𝛼 − 𝑢̃𝛼)𝜙𝑑𝑥 = 0 ∀𝜙 ∈ 𝐶∞𝑐 (Ω),
and thus 𝑢𝛼 = 𝑢̃𝛼 almost everywhere by Lemma 1.

Exercise 2 (Relation between the modulus function and the Heaviside function)
Let Ω = (−1, 1) and set 𝑢(𝑥) = |𝑥|𝐻(𝑥) = {−1 𝑥 ∈ (−1, 0)1 𝑥 ∈ [0, 1)
By simply using the definition of the weak derivative, show that 𝐻(𝑥) is the weak derivative of 𝑢.
Definition 3 (Sobolev spaces)

• 𝑊 𝑘,𝑝(Ω) ∶= {𝑢 ∈ 𝐿𝑝(Ω)| 𝜕𝛼𝑢 exists and belongs to 𝐿𝑝(Ω) ∀𝛼 with |𝛼| ⩽ 𝑘}
• For 𝑝 = 2, we usually write 𝐻𝑘(Ω) ∶= 𝑊 𝑘,2(Ω)
Note that the ‖ ⋅ ‖𝐻𝑘(Ω) is induced by the inner product(𝑣, 𝑤)𝐻𝑘(Ω) ∶= ∑|𝛼|⩽𝑘(𝜕𝛼𝑣, 𝜕𝛼𝑤)𝐿2(Ω)

• For 𝑢 ∈ 𝑊 𝑘,𝑝(Ω), we set
‖𝑢‖𝑊 𝑘,𝑝(Ω) ∶= ‖𝑢‖𝑘,𝑝,Ω ∶= ⎧{⎨{⎩(∑|𝛼|⩽𝑘 ‖𝜕𝛼𝑢‖𝑝𝐿𝑝(Ω))1/𝑝 1 ⩽ 𝑝 < ∞,∑|𝛼|⩽𝑘 ‖𝜕𝛼𝑢‖𝐿∞(Ω) 𝑝 = ∞.

• We set 𝑊 𝑘,𝑝0 (Ω) ∶= 𝐶∞𝑐 (Ω)‖⋅‖𝑘,𝑝,Ω ,
that is, the topological closure of 𝐶∞𝑐 (Ω) in 𝑊 𝑘,𝑝(Ω).

2.2. Sobolev spaces 11
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• Finally, we introduce the common notation for the dual space of 𝐻10 (Ω),𝐻−1(Ω) ∶= (𝐻10 (Ω))′.
Remark 3𝑊 𝑘,𝑝0 (Ω) can be understood as the closed subspace consisting of those function 𝜙 in 𝑊 𝑘,𝑝(Ω) which are limits of se-
quences {𝜙𝑛}∞𝑛=1 ⊂ 𝐶∞𝑐 (Ω).
Later we will need the following important result known as Poincaré inequality.

Theorem 3 (Poincaré inequality)
Let Ω be an open and bounded subset of 𝑛 and suppose then there is a constant 𝐶𝑃 = 𝐶𝑃 (𝑝, 𝑛, Ω) such that‖𝑢‖𝐿𝑝(Ω) ⩽ 𝐶𝑃 ‖∇𝑢‖𝐿𝑝(Ω).
for any 𝑢 ∈ 𝑊 1,𝑝0 (Ω).
Proof. For a proof we refer to [Evans, 2010] (p. 279).

Corollary 1
On 𝑊 1,𝑝0 (Ω), the ‖ ⋅ ‖𝑊 1,𝑝(Ω) is equivalent to the norm‖𝑢‖𝑊 1,𝑝0 (Ω) ∶= ‖∇𝑢‖𝐿𝑝(Ω)
Proof. A simple application of the Poincaré application yields‖∇𝑢‖𝑝Ω ⩽ ‖𝑢‖𝑝Ω + ‖∇𝑢‖𝑝Ω ⩽ (1 + 𝐶𝑝𝑃 )‖∇𝑢‖𝑝Ω.
2.2.2 Trace operators

Next, we very briefly discuss whether and how functions of certain Sobolev spaces defined on the domain Ω can be
restricted to the boundary 𝜕Ω. This plays an important role in the well-posedness of boundary value problems, as we
need to determine the correct spaces for the boundary data in a e.g. Dirichlet or Neumann boundary problem when the
data is non-homogeneous.
For the remaining part of this Chapter, we assume that Ω is bounded and has a “well-behaving” boundary, that is, it is
either Lipschitz or — if this doesn’t tell you much — is simply 𝐶∞.

Theorem 4 (Traces of 𝐻1(Ω) spaces)
For a bounded domainΩwith Lipschitz (or𝐶∞) boundaryΓ = 𝜕Ω, there exists a bounded operator 𝛾 ∶ 𝐻1(Ω) → 𝐿2(Γ)
(the so-called Trace Operator) such that 𝛾(𝑢) = 𝑢|Γ whenever 𝑢 ∈ 𝐶(Ω).
12 Chapter 2. A brief review on function spaces
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If such a trace operator exists, then one can show that𝐻10 (Ω) = ker𝛾 = {𝑣 ∈ 𝐻1(Ω) | 𝛾(𝑣) = 0}.
It turns out that the trace operator 𝛾 is not onto 𝐿2(Ω). Thus, when we later want to find certain weak formulations
and solutions 𝑢 ∈ 𝐻1(Ω) which also need to satisfy certain inhomogeneous boundary conditions such as 𝑢 = 𝑢𝐷 on Γ,
we need to be careful about the choice of function space from which we take the boundary data 𝑢𝐷. That motivates the
following

Definition 4 (𝐻1/2(Γ))
We set 𝐻1/2(Ω) = {𝑣 ∈ 𝐿2(Ω) | 𝛾(𝑣) = 𝑣 for some 𝑣 ∈ 𝐻1(Ω)}
and define a corresponding norm by‖𝑣‖𝐻1/2(Γ) ∶= ‖𝑣‖1/2,Γ ∶= inf{‖𝑣‖1,Ω | 𝛾(𝑣) = 𝑣}.
Consequently, ‖𝑣‖1/2,Γ ⩽ ‖𝑣‖1,Ω.

2.2. Sobolev spaces 13
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CHAPTER

THREE

WEAK FORMULATION OF PARTIAL DIFFERENTIAL EQUATIONS

In this chapter, we briefly discuss how the functional analysis and function space apparatus can be employed to analyse
the well-posedness of certain class of PDEs when given in a so-called “weak” formulation. We start by considering the
Poisson problem ∇ ⋅ ∇𝑢 = −Δ𝑢 = 𝑓 in Ω (3.1)

supplemented with some suitable boundary conditions which 𝑢 should satisfy on the boundary Γ = 𝜕Ω of Ω.
The PDE (3.1) is the prototype example of a 2nd order elliptic operator. More generally and without any significant
complications, we can consider a more general PDE of the form𝒜𝑢 ∶= −∇ ⋅ (𝐴∇𝑢) = 𝑓
where 𝐴 = (𝑎𝑖𝑗(𝑥))𝑛𝑖,𝑗=1 is a pointwise defined matrix. Note that∇ ⋅ (𝐴(𝑥)∇𝑢(𝑥)) = − 𝑛∑𝑖,𝑗=1 𝜕𝑖(𝑎𝑖𝑗(𝑥)𝜕𝑗𝑢(𝑥)) (3.2)

For most part of the remaining lectures, we will require 𝐴(𝑥) to satisfy the following defintion.
Definition 5 (Ellipticity of 𝒜 )
The partial differential operator 𝒜 given by (3.2) with coefficients 𝐴 = (𝑎𝑖𝑗)𝑁𝑖,𝑗=1 ∈ (𝐿∞(Ω))𝑛×𝑛 is called elliptic
constant 𝛼 > 0 such that

• 𝜆 ⋅ 𝐴(𝑥)𝜆 ⩾ 𝛼|𝜆|2
for any 𝜆 ∈ 𝑛.
Remark 4
Note that 𝐴 ∈ (𝐿∞(Ω))𝑛×𝑛 also implies that that there exists an 𝛽 ⩾ 0 such that also

• |𝐴(𝑥)𝜆| ⩽ 𝛽|𝜆|
holds for any 𝜆 ∈ 𝑛, and by ellipticity, we can conclude that in fact 𝛽 ⩾ 𝛼 > 0.
Exercise 3
Prove the statements made in the previous remark

TODO

15
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• Relate 𝒜 to classical Poisson problem
• Explain why general 𝐴(𝑥) is useful, e.g. anisotropic heat conduction problems

We now prepared to investigate the well-posedness of a number of boundary value problems where we supplement the
partial differential operator 𝒜 with one of the following boundary conditions

• Dirichlet boundary conditions Given function 𝑔𝐷 ∶ Γ → , we require that𝑢 = 𝑢𝐷 on Γ
• Neumann boundary conditions Given function 𝑔𝑁 ∶ Γ → , we require that

n ⋅ 𝐴∇𝑢 = 𝑔𝑁 on Γ
• Robin boundary conditions Given functions 𝑔𝑅, 𝜎 ∶ Γ → , we require that

n ⋅ 𝐴∇𝑢 = 𝜎(𝑔𝑅 − 𝑢) on Γ
These boundary conditions are called homogeneous if 𝑔𝐷 (respectively 𝑔𝑁 , 𝑔𝑅) is zero, otherwise we deal with inhomo-
geneous boundary data. We start by looking at the Poisson supplemented with Neumann boundary conditions

TODO
Later, mention possible impact on test and trial spaces.

3.1 Neumann problems

Let us consider the homogenous Neumann problem{−Δ𝑢 + 𝑢 = 𝑓 in Ω𝜕𝑛𝑢 = 0 on Γ (3.3)

Here, we used the slightly simplified notation 𝜕𝑛𝑢 = n ⋅∇𝑢. The idea to derive a so-called weak formulation of an PDE is
very similar to the idea behind the introduction of weak derivatives: We multiply with a suitable test function 𝑣, integrate
over Ω and perform integration by parts to transfer a number of derivatives to the test function 𝑣.
What kind of test function space we choose is often dictated by 2 considerations:

1. What kind of smoothness do we require to make the derived formulation work?
2. How do we take into account the boundary conditions?

For the Neumann boundary problem, let’s assume for the moment that 𝑢, our boundary Γ and our test functions 𝑣 are
smooth enough so that we can use Green’s theorem, e.g, 𝑢 ∈ 𝐶2(Ω), Γ is a 𝐶1 boundary, and 𝑣 ∈ 𝐶∞(Ω). Then
multiplying the PDE in (3.1) with 𝑣 and integrating over Ω and applying Green’s theorem leads to∫Ω 𝑓𝑣 d𝑥 = − ∫Ω ∇ ⋅ (∇𝑢)𝑣 d𝑥 + ∫Ω 𝑢𝑣 d𝑥= − ∫Γ (n ⋅ ∇𝑢)⏟=0 𝑣 d𝑥 + ∫Ω ∇𝑢 ⋅ ∇𝑣 d𝑥 + ∫Ω 𝑢𝑣 d𝑥 (3.4)

Note that the Neumann boundary condition n ⋅ ∇𝑢 = 0 makes the boundary integrals vanish. Also observe that the right-
hand side of (3.4) can be interpreted as taking the inner product associated with 𝐻1(Ω) between 𝑢 and 𝑣. In fact, the
16 Chapter 3. Weak formulation of partial differential equations
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expression makes perfectly sense even if we assume only assume that both 𝑢, 𝑣 ∈ 𝐻1(Ω) =∶ 𝑉 !. With this assumption,
we can define the bilinear form 𝑎(𝑣, 𝑤) ∶= ∫Ω ∇𝑣 ⋅ ∇𝑤 d𝑥 + ∫Ω 𝑣𝑤 d𝑥 (3.5)

on 𝑉 ×𝑉 , and it is straightforward to show that 𝑎(⋅, ⋅) (being the𝐻1 inner product itself) satisfies the required assumptions
of the Lax-Milgram theorem:

Boundedness: 𝑎(𝑣, 𝑤) ∶= ∫Ω ∇𝑣 ⋅ ∇𝑤 d𝑥 + ∫Ω 𝑣𝑤 d𝑥 = (𝑣, 𝑤)𝐻1(Ω) ⩽ ‖𝑣‖𝐻1(Ω)‖𝑤‖𝐻1(Ω) (3.6)

Coercivity: 𝑎(𝑣, 𝑣) = ∫Ω |∇𝑣|2 d𝑥 + ∫Ω |𝑣|2 d𝑥 = (𝑣, 𝑣)𝐻1(Ω) = ‖𝑣‖2𝐻1(Ω) (3.7)

Next, we define the linear form 𝑙 ∶ 𝑉 → 𝑙(𝑣) ∶= ∫Ω 𝑓𝑣 d𝑥 = (𝑓, 𝑣)𝐿2(Ω) (3.8)

If we assume that 𝑓 ∈ 𝐿2(Ω), then thanks to the Cauchy-Schwarz inequality,|𝑙(𝑣)| = |(𝑓, 𝑣)𝐿2(Ω)| ⩽ 𝑓‖𝐿2(Ω)‖𝑣‖𝐿2(Ω) ⩽ 𝑓‖𝐿2(Ω)‖𝑣‖𝐻1(Ω),
we can immediately conclude that 𝑙 is a continuous bilinear form with 𝐶𝑙 = ‖𝑓‖𝐿2(Ω). Thus the the Lax-Milgram theorem
let us conclude that the problem: find 𝑢 ∈ 𝐻1(Ω) =∶ 𝑉 such that ∀𝑣 ∈ 𝑉𝑎(𝑢, 𝑣) = 𝑙(𝑣)
has a unique solution for every 𝑓 ∈ 𝐿2(Ω) with ‖𝑢‖𝐻1(Ω) ⩽ ‖𝑓‖𝐿2(Ω).
TODO (variants of Neumann problems)
Discuss Neumann problems when a) lower term is not present b) 𝑔𝑁 ≠ 0:{−Δ𝑢 = 𝑓 in Ω𝜕𝑛𝑢 = 0 on Γ (3.9)

and {−Δ𝑢 = 𝑓 in Ω𝜕𝑛𝑢 = 𝑔𝑁 on Γ (3.10)

3.2 Robin problems

{−Δ𝑢 = 𝑓 in Ω𝜕𝑛𝑢 = 0 on Γ (3.11)

3.2. Robin problems 17
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3.3 Dirichlet problems

3.3.1 Homogeneous Dirichlet problem for −Δ + Id operator

Next, we consider {−Δ𝑢 + 𝑢 = 𝑓 in Ω𝑢 = 0 on Γ (3.12)

We proceed as for the Neumann problem: we multiply with suitable test functions 𝑣 and integrate by part, but this time,
the boundary integral does not vanish since we don’t have natural boundary conditions to incorporate. To compensate,
we only consider test functions 𝑣 ∈ 𝐶∞𝑐 (Ω) which vanish at the boundary. Then again, we obtain∫Ω 𝑓𝑣 d𝑥 = − ∫Ω ∇ ⋅ (∇𝑢)𝑣 d𝑥 + ∫Ω 𝑢𝑣 d𝑥= − ∫Γ(n ⋅ ∇𝑢) 𝑣⏟=0 d𝑥 + ∫Ω ∇𝑢 ⋅ ∇𝑣 d𝑥 + ∫Ω 𝑢𝑣 d𝑥. (3.13)

Intuitively speaking we know how the solution 𝑢 is going to look like on the boundary, namely 𝑢 = 0, so we don’t need
test functions which test for how the equation “behaves” at the boundary. Also, we now require that our function 𝑢 comes
from a function space where the boundary condition 𝑢 = 0 is already incorporated. This is exactly what the𝐻10 (Ω) space
is made for! So the weak formulation for (3.3.1) is:
Find 𝑢 ∈ 𝑉 ∶= 𝐻10 (Ω) such that 𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝑉 , (3.14)

where 𝑎(⋅, ⋅) and 𝑙(⋅) are defined as in (3.5) and (3.8), respectively. As in the case for the homogeneous Neumann problem
(3.1), we can show that 𝑎 and 𝑙 satisfy the assumption of the the Lax-Milgram theorem, and therefore we can conclude there
there is a unique solution 𝑢 to the weak formulation of the homogeneous Poisson problem which depends continuously
on the data 𝑓 .
Important: The only but very important difference between the weak formulation of the homogeneous Neumann problem
(3.1) and the homogeneous Dirichlet problem (3.3.1) is the Hilbert space on which they are posed on.

3.3.2 Homogeneous Dirichlet problem for −Δ operator

Now, we consider a slightly modified problem Poisson problem where the low order term 𝑢 is left out:{−Δ𝑢 = 𝑓 in Ω𝑢 = 0 on Γ (3.15)

Repeating the steps from the previous section, we arrive at the problem: Find 𝑢 ∈ 𝑉 ∶= 𝐻10 (Ω) such that𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝑉 , (3.16)

with the only distinction that 𝑎(⋅, ⋅) is now given by𝑎(𝑣, 𝑤) = ∫Ω ∇𝑣 ⋅ ∇𝑤𝑑𝑥.
The boundedness of 𝑎(⋅, ⋅) and 𝑙(⋅) can be shown (almost) exactly as before. But let’s have a look at the coerciv-
ity/ellipticity: Setting 𝑢 = 𝑣, we obtain 𝑎(𝑣, 𝑣) = ∫Ω |∇𝑣|2
18 Chapter 3. Weak formulation of partial differential equations
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But thanks to the Poincaré inequality and Corollary 1 we not only know that |∇ ⋅ | defines norm on the closed subspace𝐻10 (Ω) but that this norm is equivalent to the usual 𝐻1-norm. Thanks to the proof of Corollary 1 we see that𝑎(𝑣, 𝑣) = ∫Ω |∇𝑣|2 ⩾ (1 + 𝐶2𝑝)−1/2‖𝑢‖21,Ω.
3.3.3 Inhomogeneous Dirichlet problem for −Δ operator

Next, we consider {−Δ𝑢 + 𝑢 = 𝑓 in Ω𝑢 = 𝑔𝐷 on Γ (3.17)

Compared to our previous weak formulation for the homogenous, the main question is now: how can we incorporate the
non-homogenous Dirichlet b.c. 𝑢 = 𝑔𝐷? First, we realize that the trial function 𝐻10 (Ω) for the solution does not make
sense anymore. So let’s start from 𝐻1(Ω). Then we also observe that the data 𝑔𝐷 should be in 𝐻1/2(Γ), see Definition 4
to ensure that we can satisfy the equation 𝑢 = 𝑔𝐷, and only 𝑢 satisfying this b.c. should be vialable solution candidates
for our weak formulation. Thus we set 𝐻1𝑔𝐷(Ω) ∶= {𝑣 ∈ 𝐻1(Ω) | 𝛾(𝑣) = 𝑔𝐷}.
Since 𝑔𝐷 ∈ 𝐻1/2(Γ), this set is not empty. Note that 𝐻1𝑔𝐷(Ω) is not really a vector space whenever 𝑔𝐷 is not 0
everywhere since the addition of two functions 𝑢1, 𝑢2 with the same non-vanishing boundary data 𝑔𝐷 will result in a
function 𝑢 satisfying 𝑢 = 2𝑔𝐷! Is that sense, 𝐻1𝑔𝐷(Ω) should rather be considered as affine subspace: For any 𝑢𝑔𝐷
satfying 𝛾(𝑢𝑔𝐷) = 𝑔𝐷, it holds that𝐻1𝑔𝐷(Ω) = 𝑢𝑔𝐷 + 𝐻10 (Ω) ∶= {𝑢𝑔𝐷 + 𝑣 | 𝑣 ∈ 𝐻10 (Ω)} = 𝛾−1(𝑔𝐷).
So the resulting weak formulation is Find 𝑢 ∈ 𝑉 ∶= 𝐻1𝑔𝐷(Ω) such that for all 𝑣 ∈ 𝑉 ∶= 𝐻10 (Ω),∫Ω ∇𝑢 ⋅ ∇𝑣 d𝑥⏟⏟⏟⏟⏟⏟⏟=∶𝑎(𝑢,𝑣) = ∫Ω 𝑓𝑣 d𝑥⏟=∶𝑙(𝑣) .
Note how in this case the trial function space and test function space are not identical any more! How can we prove the
well-posedness of this weak formulation? Lax-Milgram usually requires that the first and second slot of 𝑎(⋅, ⋅) invokes
elements from the same (vector) space! The common trick here is to “lift” the boundary condition, i.e. we know that by
the definition of 𝐻1/2(Γ) there must a 𝑢𝑔 ∈ 𝐻1(Ω) such that 𝛾𝑢𝑔 = 𝑔𝐷. Then we make the ansatz 𝑢 = 𝑢0 + 𝑢𝑔 and
with 𝑢0 ∈ 𝐻10 (Ω), leading to the following weak formulation: find 𝑢0 ∈ 𝐻10 (Ω) =∶ 𝑉 such that𝑎(𝑢0, 𝑣) = 𝑙(𝑣) − 𝑎(𝑢𝑔, 𝑣) =∶ ̃𝑙(𝑣)∀ 𝑣 ∈ 𝑉 .

3.3. Dirichlet problems 19
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CHAPTER

FOUR

A PRIMER ON FINITE ELEMENT METHODS

4.1 Galerkin’smethod: A recipe to discretize partial differential equa-
tions

4.1.1 The general recipe

Galerkin’s method is an general approach to solve partial differential equation numerically by transforming them into a
system of discrete equations. The computed solution to the discrete equations can then be thought of as an approximation
to the solution of the original PDE. Figure Fig. 4.1 summarizes the four stages of the discretization approach which we
describe next. As usual, we will use the Poisson problem as a guiding prototype example.

Note: The following recipe is deliberately kept vague. Details such as boundary conditions, suitable function spaces, and

Fig. 4.1: The four stages of Galerkin’s method to discretize partial differential equations.

Stage 1 Strong formulation of the PDE
Starting point is a partial differential equation 𝒜𝑢 = 𝑓 (4.1)

in strong form: for given function 𝑓 ∶ Ω ⊂ 𝑛 → and partial differential operator 𝒜, we assume that the function𝑢 ∶ Ω → satisfies the relation (4.1) pointwise so that 𝒜𝑢(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ Ω.
21
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Our favorite example is of course the Poisson problem with homogeneous Dirichlet boundary condition:−Δ𝑢 = 𝑓 in Ω, (4.2)𝑢 = 0 on Γ. (4.3)

Stage 2 Continuous weak formulation of the PDE
Find 𝑢 ∈ 𝑉 such that 𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝑉 . (4.4)

The standard approach to obtain a weak formulation is to multiply with the strong form of the PDE with appropriate test
functions which satisfy appropriate smoothness assumptions and —if required— boundary conditions.
For the Poisson problem with homogeneous Dirichlet b.c. we saw previously that we arrived at the weak formulation:
Find 𝑢 ∈ 𝑉 ∶= 𝐻10 (Ω) s.t. ∀𝑣 ∈ 𝑉 ∫Ω ∇𝑢 ⋅ ∇𝑣 d𝑥⏟⏟⏟⏟⏟⏟⏟𝑎(𝑢,𝑣) = ∫Ω 𝑓𝑣 d𝑥⏟𝑙(𝑣) .
Stage 3 Discrete weak formulation of the PDE
By choosing a suitable approximation space 𝑉ℎ ⊂ 𝑉 with finite dimension 𝑁 = dim𝑉ℎ, we obtain the discrete weak
formulation:
Find 𝑢ℎ ∈ 𝑉ℎ such that 𝑎(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ. (4.5)

Stage 4 Formulation as system of discrete equations
To translate the now finite-dimensional problem (4.5) into a discrete system of equations, we choose a basis for the discrete
function space 𝑉ℎ = span{𝜙𝑖}𝑁𝑖=1.
First observe that the problem (4.5) is then equivalent to seek a 𝑢ℎ ∈ 𝑉ℎ such that𝑎(𝑢ℎ, 𝜙ℎ) = 𝑙(𝜙𝑖) 𝑖 = 1, … 𝑁, (4.6)

since 𝑎(⋅, ⋅) and 𝑙(⋅) are linear in their respectively second and first slot.
The second step is now to rewrite 𝑢ℎ = ∑𝑁𝑗=1 𝑈𝑗𝜙𝑗 with the help of the basis functions and to insert this representation
into (4.6) to obtain a discrete system of equations for the coefficient vector (𝑈𝑖)𝑁𝑖 ∈ 𝑁 . If 𝑎(⋅, ⋅) is not linear in the first
slot —think of nonlinear PDEs such as the Navier-Stokes equations—, then the resulting system is truly nonlinear. But
for weak formulation one linear PDEs, the linearity in the first slot of 𝑎(⋅, ⋅) allows us to to cast (4.6) into a linear system𝐴𝑈 = 𝑏 (4.7)

with 𝐴 ∈ 𝑁×𝑁 and 𝑏 ∈ 𝑁 since𝑎(𝑢ℎ, 𝜙ℎ) = 𝑎( 𝑁∑𝑗=1 𝑈𝑗𝜙𝑗, 𝜙ℎ) = 𝑁∑𝑗=1 𝑎(𝜙𝑗, 𝜙𝑖)⏟=∶𝐴𝑖𝑗
𝑈𝑗 = 𝑙(𝜙𝑖)⏟=∶𝑏𝑖 𝑖 = 1, … 𝑁. (4.8)

22 Chapter 4. A primer on finite element methods
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4.1.2 Abstract error theory

Lemma 3 (Galerkin orthogonality)
Assume that 𝑉ℎ ⊂ 𝑉 and that 𝑢 ∈ 𝑉 and 𝑢ℎ ∈ 𝑉ℎ solve the continuous weak formulation (4.4) and the discrete weak
formulation (4.5), respectively. Then the error 𝑢 − 𝑢ℎ satisfies the orthogonality relation𝑎(𝑢 − 𝑢ℎ, 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉ℎ. (4.9)

Proof. If 𝑣ℎ ∈ 𝑉ℎ ⊂ 𝑉 , then the continuous 𝑢 and the discrete solution 𝑢ℎ satisfy𝑎(𝑢, 𝑣ℎ) = 𝑙(𝑣ℎ),𝑎(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ).
Subtracting the second equality from the first yields (4.9).

Lemma 4 (Cea’s lemma)
Assume that

• 𝑉ℎ ⊂ 𝑉
• the continuous weak formulation (4.4) satisfies the assumptions of the Lax-Milgram theorem.
• 𝑢 ∈ 𝑉 is solution to the continuous weak formulation (4.4)
• 𝑢ℎ ∈ 𝑉ℎ is solution to the discrete weak formulation (4.5)

Then 𝑢ℎ satisfies a quasi best approximation property in the sense that‖𝑢 − 𝑢ℎ‖ ⩽ 𝐶𝑎𝛼 inf𝑣∈𝑉ℎ ‖𝑢 − 𝑣ℎ‖. (4.10)

holds for the error 𝑢 − 𝑢ℎ. Here 𝐶𝑎 and 𝛼 are the boundedness and ellipticity constants for 𝑎(⋅, ⋅) appearing the assump-
tions for the Lax-Milgram theorem.

Proof. Let 𝑣ℎ ∈ 𝑉ℎ be fixed but arbitrary, then we wish to show that‖𝑢 − 𝑢ℎ‖ ⩽ 𝐶𝑎𝛼 ‖𝑢 − 𝑣ℎ‖. (4.11)

The proof of this inequality is rather short. Its main essence consists of three estimates where we first use coercivity
of 𝑎(⋅, ⋅) to relate ‖𝑢 − 𝑢ℎ‖ to 𝑎(⋅, ⋅), then add and substract the given 𝑣ℎ and apply Galerkin orthogonality, and finally
boundedness of 𝑎(⋅, ⋅) is exploited to estimate the resulting expression. To this end, we see that𝛼‖𝑢 − 𝑢ℎ‖2 ⩽ 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ)= 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑣ℎ + 𝑣ℎ − 𝑢ℎ)= 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑣ℎ) + 𝑎(𝑢 − 𝑢ℎ, 𝑣ℎ − 𝑢ℎ)⏟⏟⏟⏟⏟⏟⏟⏟⏟=0⩽ 𝐶𝑎‖𝑢 − 𝑢ℎ‖‖𝑢 − 𝑣ℎ‖ (4.12)

Assuming that ‖𝑢 − 𝑢ℎ‖ ≠ 0 (otherwise (4.11) is trivially satisfied), we can divide (4.12) by ‖𝑢 − 𝑢ℎ‖ and 𝛼 to see that‖𝑢 − 𝑢ℎ‖ ⩽ 𝐶𝛼 ‖𝑢 − 𝑣ℎ‖.
4.1. Galerkin’s method: A recipe to discretize partial differential equations 23
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Galerkin’s method: A recipe to discretize
partial differential equations

The general recipe

Galerkin’s method is an general approach to solve partial differential equation numerically

by transforming them into a system of discrete equations. The computed solution to the

discrete equations can then be thought of as an approximation to the solution of the

original PDE. Figure Fig. 1 summarizes the four stages of the discretization approach

which we describe next. As usual, we will use the Poisson problem as a guiding prototype

example.

The following recipe is deliberately kept vague. Details such as boundary

conditions, suitable function spaces, and

Fig. 1 The four stages of Galerkin’s method to discretize partial differential equations.

Stage 1

Strong formulation of the PDE

Starting point is a partial differential equation

in strong form: for given function  and partial differential operator , we

assume that the function  satisfies the relation (22) pointwise so that

.

Note

(22)Au = f

f : Ω ⊂ Rn → R A

u : Ω → R

Au(x) = f(x) ∀x ∈ Ω
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Our favorite example is of course the Poisson problem with homogeneous Dirichlet

boundary condition:

Stage 2

Continuous weak formulation of the PDE

Find  such that

The standard approach to obtain a weak formulation is to multiply with the strong form of

the PDE with appropriate test functions which satisfy appropriate smoothness

assumptions and —if required— boundary conditions.

For the Poisson problem with homogeneous Dirichlet b.c. we saw previously that we

arrived at the weak formulation: Find  s.t. 

Stage 3

Discrete weak formulation of the PDE

By choosing a suitable approximation space  with finite dimension ,

we obtain the discrete weak formulation:

Find  such that

Stage 4

Formulation as system of discrete equations

To translate the now finite-dimensional problem (25) into a discrete system of equations,

we choose a basis for the discrete function space

First observe that the problem (25) is then equivalent to seek a  such that

since  and  are linear in their respectively second and first slot.

The second step is now to rewrite  with the help of the basis functions

and to insert this representation into (26) to obtain a discrete system of equations for the

coefficient vector . If  is not linear in the first slot —think of nonlinear

PDEs such as the Navier-Stokes equations—, then the resulting system is truly nonlinear.

But for weak formulation one linear PDEs, the linearity in the first slot of  allows us to

to cast (26) into a linear system

with  and  since

(23)
−Δu = f in Ω,

u = 0 on Γ.

u ∈ V

(24)a(u, v) = l(v) ∀v ∈ V .

u ∈ V := H 1
0 (Ω) ∀v ∈ V

∫
Ω

∇u ⋅ ∇v dx

a(u,v)

= ∫
Ω

fv dx

l(v)

.
 

Vh ⊂ V N = dim Vh

uh ∈ Vh

(25)a(uh, vh) = l(vh) ∀vh ∈ Vh.

Vh = span{ϕi}
N
i=1.

uh ∈ Vh

(26)a(uh, ϕh) = l(ϕi) i = 1, … N ,

a(⋅, ⋅) l(⋅)

uh = ∑N
j=1 Ujϕj

(Ui)N
i ∈ RN a(⋅, ⋅)

a(⋅, ⋅)

(27)AU = b

A ∈ RN×N b ∈ RN

(28)a(uh, ϕh) = a(
N

∑
j=1

Ujϕj, ϕh) =
N

∑
j=1

a(ϕj, ϕi)

=:Aij

Uj = l(ϕi)

=:bi

i = 1, … N .
 
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Abstract error theory

Assume that  and that  and  solve the continuous weak

formulation (24) and the discrete weak formulation (25), respectively. Then the

error  satisfies the orthogonality relation

Proof. If , then the continuous  and the discrete solution  satisfy

Subtracting the second equality from the first yields (29).

Proof. Let  be fixed but arbitrary, then we wish to show that

The proof of this inequality is rather short. Its main essence consists of three

estimates where we first use coercivity of  to relate  to , then

add and substract the given  and apply Galerkin orthogonality, and finally

boundedness of  is exploited to estimate the resulting expression. To this end,

we see that

Assuming that  (otherwise (31) is trivially satisfied), we can divide (32)

by  and  to see that

Lemma 3 (Galerkin orthogonality)

Vh ⊂ V u ∈ V uh ∈ Vh

u − uh

(29)a(u − uh, vh) = 0 ∀ vh ∈ Vh.

vh ∈ Vh ⊂ V u uh

a(u, vh) = l(vh),
a(uh, vh) = l(vh).

Assume that

• 

• the continuous weak formulation (24) satisfies the assumptions of the Lax-

Milgram theorem.

•  is solution to the continuous weak formulation (24)

•  is solution to the discrete weak formulation (25)

Then  satisfies a quasi best approximation property in the sense that

holds for the error . Here  and  are the boundedness and ellipticity

constants for  appearing the assumptions for the Lax-Milgram theorem.

Lemma 4 (Cea’s lemma)

Vh ⊂ V

u ∈ V

uh ∈ Vh

uh

(30)∥u − uh∥ ⩽
Ca

α
inf

v∈Vh

∥u − vh∥.

u − uh Ca α

a(⋅, ⋅)

vh ∈ Vh

(31)∥u − uh∥ ⩽
Ca

α
∥u − vh∥.

a(⋅, ⋅) ∥u − uh∥ a(⋅, ⋅)

vh

a(⋅, ⋅)

(32)

α∥u − uh∥2 ⩽ a(u − uh, u − uh)
= a(u − uh, u − vh + vh − uh)
= a(u − uh, u − vh) + a(u − uh, vh − uh)

=0

⩽ Ca∥u − uh∥∥u − vh∥



∥u − uh∥ ≠ 0

∥u − uh∥ α

∥u − uh∥ ⩽
C

α
∥u − vh∥.

By André Massing

A primer on finite element methods — MA8502 - Numerical Solutions of Partia... file:///home/andre/Documents/repositories/courses/ntnu/ma8502_num-pde/M...

3 of 4 1/19/23, 11:46

Il a-wall

...Ex
a-ke

#in

->Gax-Milgram - "norm

in

E =G-4er - Gw+Ww
*
mipticityC , E

E E Ver

Donne
2

0
I
aEb



© Copyright 2022.

A primer on finite element methods — MA8502 - Numerical Solutions of Partia... file:///home/andre/Documents/repositories/courses/ntnu/ma8502_num-pde/M...

4 of 4 1/19/23, 11:46

Element:Id, continuous firstorder
elements

19:2 =[a,b]

V: ={we(([ab]). wI,CT:) i=31...233

·Ti =[xinix:] i =1.. m,ET3*Ja
Ko =GweVe:v =4),

=03

:It
ini
a

Xo xz Xi
=b

·Basis functions {d;for Von s.t.

P,(X,) =dij =Gi
=3

0 i =j

do d 02
⑧ &

·
i
a

Xo Xn Xz Xi
=b



© Copyright 2022.

A primer on finite element methods — MA8502 - Numerical Solutions of Partia... file:///home/andre/Documents/repositories/courses/ntnu/ma8502_num-pde/M...

4 of 4 1/19/23, 11:46

· J.:H**(R) -> Vw

·(32w)(x) =[w(xi).4,(x)
i=0

32(u)(xj) =u(xj).
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