Norwegian University of Science and Technology Department of Mathematical Sciences

 $Page \ 1 \ of \ 2$

Problem 1	Exercise 71.
Problem 2	Show that the binary Golay code $([23, 12, 7]$ -code) is perfect.
Problem 3	Exercise 111.
Problem 4 $d = 5$?	Does there exist a code with length $n = 9$, dimension $k = 2$ and distance
Problem 5	Find an upper and lower limit for a code with $n = 9$ and $d = 5$.
Problem 6 $og d = 3.$	Find an upper limit for the number of elements in a linear code with $n = 6$
Problem 7	Exercise 87.
Problem 8	Exercise 91 a) og b).
Problem 9	Show that $\mathbb{Z}/(n) = \mathbb{Z}_n$ is not a field if n is not a prime (Exercise 150).
Problem 10	What is $\operatorname{Char}(\mathbb{F}_4)$?
Problem 11	Exercise 151 a), b) og c).

3

Exercise 3 - Problems given during lectures

Problem 12 Exercise 156, 157 og 158.

Problem 13 Exercise 160, 161.

Problem 14 1) Write $f(x) = x^3 + x^2 + x + 1 \in \mathbb{F}_2[x]$ as a product of irreducible polynomials. 2) Is $x^4 + x + 1 \in \mathbb{F}_2[x]$ reducible or irreducible?