Norges teknisk– naturvitenskapelige universitet Institutt for matematiske fag

Contact during exam: Aslak Bakke Buan 73550289/73593520

EXAM IN SIF5032 CODING THEORY English Saturday 25. May 2002 Time: 0900-1400

Permitted aids: approved calculator all printed or written aids

The grades are posted in week 24.

Problem 1

Let C be the binary code given by the generatormatrix

[1	0	0	0	1	1	1	0
0	1	0	0	1	1	0	1
0	0	1	0	1	0	1	1
0	0	0	1	0	1	1	1

- a) Find the minimum distance of the code?
- **b)** A received vector $\underline{v} = (1111100x)$ has at most one error and one erasure.

Find the codeword that was sent.

c) Let \tilde{C} be a code where the elements are 3×8 -matrices with rows in C, and such that row 3 is the (binary-)sum of row 1 and row 2.

Then \tilde{C} can correct ≤ 3 errors. Explain why and how?

Problem 2

Let α be a primitive element in $GF(32)^*$, with $\alpha^5 + \alpha^2 + 1 = 0$.

Page 1 of 2

a) Show that $m(x) = x^5 + x^4 + x^3 + x^2 + 1$ is the minimal polynomial in GF(2)[x] of α^3 .

A BCH-code C is defined by the conditions

$$f_{\underline{c}}(\alpha) = f_{\underline{c}}(\alpha^3) = 0, \quad \deg f_{\underline{c}} < 32.$$

b) Find a generator polynomial for C.

Show that the minimum distance of C is 5.

c) Assume a vector \underline{r} is received, with

$$f_r(\alpha) = 1, \quad f_r(\alpha^3) = \alpha^7 + 1.$$

If at most two errors have occured, where in \underline{r} are the errors?

Problem 3

Let $g(x) = 1 + x^2 + x^4 + x^5$ in GF(2)[x], and let $C = \langle g(x) \rangle$ be a binary cyclic code of length 15.

- a) Compute $(x^{15} + 1) : g(x)$. Find a parity-check matrix for C.
- **b**) Find the minimum distance of C?
- c) Assume you have received a vector where either one digit is wrong or two neighbouring digits have changed place. How can you find the codeword that was sent?

Problem 4

- a) For which values of k is there a binary [13, k, 3]-code?
- **b)** For which values of k is there a binary cyclic [13, k, 3]-code?
- c) For which positive values of r is there a binary [13 + r, 9 + r, 3]-code? Find (the generatormatrix of) a code with these parameters and biggest possible value of r.