
THE INVERSE FUNCTION THEOREM

Let Rn denote Euclidean n-space with inner product 〈x, y〉 = Σxiyi, and norm ‖x‖ =
√
〈x, x〉.

L(Rn,Rm) denotes the vector space of linear transformations A : Rn → Rm. We identify L(Rn,Rm)
with the m × n-matrices, and use the norm given by the inner product 〈A,B〉 = tr(A>B) (where tr
denotes the trace of a matrix). If we further identify L(Rn,Rm) with Rnm in the natural way, then
this inner product and norm correspond to the Euclidean inner product and norm above.

If x ∈ Rn and A ∈ L(Rn,Rm), then ‖Ax‖ ≤ ‖A‖‖x‖ and if x ∈ Rn and y ∈ Rm, and we think of yx>

as an element of L(Rn,Rm), then ‖yx>‖ = ‖y‖‖x‖.

Composition ◦ : L(Rm,Rp) × L(Rn,Rm) → L(Rn,Rp) is continuous (even smooth). Let GL(n,R) ⊆
L(Rn,Rn) denote the subset corresponding to the invertible n × n-matrices. This is an open subset
of L(Rn,Rn) and the map inv : GL(n,R) → GL(n,R) given by inv(A) = A−1, is continuous (even
smooth) as is seen for example from Cramer’s Rule.

Let U ⊆ Rn and V ⊆ Rm be open sets. Recall that a function f : U → V is differentiable at x0 ∈ U
if there is an element A ∈ L(Rn,Rm) such that

(∗) lim
h→0

f(x0 + h)− f(x0)−Ah
‖h‖

= 0.

If (∗) holds, then Ax = lim
t→0

f(x0+tx)−f(x0)
t (t ∈ R) for all x ∈ Rn, and A is unique if it exists. If f is

differentiable at x0, we call A the derivative of f at x0 and denote it by Df(x0). It is easy to see that
if f is differentiable at x0, then f is continuous at x0. (This also follows from the lemma below.) If f
is differentiable at all x ∈ U , we call f differentiable in U .

Lemma. Let U ⊆ Rn be open, and let f : U → Rm be a function. Then f is differentiable at
x0 ∈ U if and only if there exists a function α : U → L(Rn,Rm) such that α is continuous at x0 and
f(x) = f(x0) + α(x)(x− x0) for all x ∈ U .

Proof. If f is differentiable at x0, define α : U → L(Rn,Rm) by

α(x) =

{
Df(x0) + r(x)(x−x0)

>

‖x−x0‖2 if x 6= x0

Df(x0) if x = x0,

where r(x) = f(x) − f(x0) −Df(x0)(x − x0), x ∈ U . Then clearly f(x) = f(x0) + α(x)(x − x0) for
all x ∈ U . From ‖r(x)(x− x0)>‖ = ‖r(x)‖‖x− x0‖ and (∗) above, we see that α is continuous at x0.
Next assume that a function α as in the lemma exists. Then the continuity of α at x0 gives that

lim
h→0

‖f(x0 + h)− f(x0)− α(x0)h‖
‖h‖

= lim
h→0

‖[α(x0 + h)− α(x0)]h‖
‖h‖

≤ lim
h→0
‖α(x0 + h)− α(x0)‖ = 0.

Hence f is differentiable at x0. �

Note that if a function α as in the lemma exists, then Df(x0) = α(x0). If n = m = 1 in the lemma,
and f is differentiable at x0, then α is given by

α(x) =

{
f(x)−f(x0)

x−x0
if x 6= x0

f ′(x0) if x = x0.

Theorem (The Chain Rule). Let U ⊆ Rn and V ⊆ Rm be open sets, and let f : U → V and
g : V → Rp. If f is differentiable at x0 ∈ U and g is differentiable at f(x0), then g ◦ f : U → Rp is
differentiable at x0, and

D(g ◦ f)(x0) = Dg (f(x0)) ◦Df(x0).

Proof. By the lemma, there exists α : U → L(Rn,Rm) such that α is continuous at x0 and f(x) =
f(x0) + α(x)(x − x0) for all x ∈ U ; and β : V → L(Rm,Rp) continuous at y0 = f(x0), such that
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g(y) = g(y0) + β(y)(y − y0) for all y ∈ V . For x ∈ U we then have

(g ◦ f)(x) = (g ◦ f)(x0) + [β (f(x)) ◦ α(x)](x− x0),

and γ : U → L(Rn,Rp) given by γ(x) = β (f(x))◦α(x) is continuous at x0 since f and α are continuous
at x0, β is continuous at f(x0), and composition is continuous. By the lemma, g ◦ f is differentiable
at x0 with D(g ◦ f)(x0) = β (f(x0)) ◦ α(x0) = Dg (f(x0)) ◦Df(x0). �

We also have that if id : U → U (U open in Rn) denotes the identity function given by id(x) = x for
all x ∈ U , then Did(x0) = I (the identity function Rn → Rn) for all x0. Also an inclusion i : U → V
(U ⊆ V ⊆ Rn open subsets) has Di(x0) = I for all x0 ∈ U .

Corollary. Let U, V ⊆ Rn be open sets, and let f : U → V be a bijection. If f is differentiable at
x0 ∈ U and f−1 is differentiable at f(x0), then Df(x0) is invertible and Df−1 (f(x0)) = Df(x0)−1.
�

Theorem (The Mean Value Theorem). Let U ⊆ Rn be open, and let f : U → Rm be a differentiable
in U . If x, x′ ∈ U are such that (1 − t)x + tx′ ∈ U for all t ∈ [0, 1] and ‖Df ((1− t)x+ tx′) ‖ ≤ M
for all t ∈ [0, 1], then ‖f(x′)− f(x)‖ ≤M‖x′ − x‖.

Proof. Define φ : [0, 1] → R by φ(t) = 〈f ((1− t)x+ tx′) , f(x′) − f(x)〉. Then φ is continuous, and
differentiable on (0, 1) with φ′(t) = 〈Df ((1− t)x+ tx′) (x′ − x), f(x′) − f(x)〉 by the Chain Rule.
Hence φ(1) − φ(0) = φ′(t0) for some t0 ∈ (0, 1). Let z = (1 − t0)x + t0x

′. Then using the Cauchy–
Schwarz inequality (|〈x, y〉| ≤ ‖x‖‖y‖), we get

‖f(x′)− f(x)‖2 = φ(1)− φ(0)

= 〈Df(z)(x′ − x), f(x′)− f(x)〉
≤ ‖Df(z)(x′ − x)‖‖f(x′)− f(x)‖

and hence ‖f(x′)− f(x)‖ ≤ ‖Df(z)‖‖x′ − x‖ ≤M‖x′ − x‖. �

Proposition. Let U, V ⊆ Rn be open sets, and let f : U → V be a bijection. If f is differentiable at
x0 ∈ U with Df(x0) invertible and f−1 is continuous at f(x0), then f−1 is differentiable at f(x0).

Proof. Since f is differentiable at x0, the lemma gives that there exists a function α : U → L(Rn,Rm),
continuous at x0, such that f(x) = f(x0) + α(x)(x− x0) for all x ∈ U .

Recall that GL(n,R) ⊆ L(Rn,Rn) is open. Then from α(x0) = Df(x0) ∈ GL(n,R) and the continuity
of α at x0, we get that there exists an open neighborhood U ′ ⊆ U of x0 such that α(x) ∈ GL(n,R)
for all x ∈ U ′. Let g = f−1 : V → U and let y0 = f(x0) ∈ V . Since f−1 is assumed to be continuous
at y0, there exists an open neighborhood V ′ ⊆ V of y0 such that V ′ ⊆ g−1(U ′) = f(U ′). For y ∈ V ′
we have y − y0 = f (g(y)) − f(x0) = α (g(y)) (g(y)− x0). Since y ∈ V ′, g(y) ∈ U ′, and α (g(y)) is
invertible. Hence we have

g(y) = g(y0) + α (g(y))
−1

(y − y0)

for all y ∈ V ′. Let β : V ′ → L(Rn,Rn) be given by β(y) = α (g(y))
−1

. Then β is continuous at y0 since
g is continuous at y0, α is continuous at x0 = g(y0), and inv : GL(n,R) → GL(n,R) is continuous.
Hence g is differentiable at y0, i.e. f−1 is differentiable at f(x0). �

Compare this with the corollary above.

Theorem (The Inverse Function Theorem). Let U ⊆ Rn be open, and let f : U → Rn be a C1-
function. If x0 ∈ U and Df(x0) is invertible, then there exists open sets V ⊆ U and W ⊆ f(U) such
that x0 ∈ V and f : V →W is a C1-diffeomorphism.

Proof. Recall that f : U → Rn is a C1-function if f is differentiable in U and Df : U → L(Rn,Rn)
is continuous, and that f : V → W is a C1-diffeomorphism if f is C1-function, is invertible, and also
f−1 is a C1-function.

We first show that f is injective near x0. Let f̃ : U → Rn be given by f̃(x) = x−Df(x0)−1f(x). Then

Df̃(x) = I −Df(x0)−1Df(x) for all x ∈ U , and f̃ is C1. Since Df̃(x0) = O and Df̃ : U → L(Rn,Rn)

is continuous, we can find a δ > 0 such that Bδ(x0) ⊆ U and ‖Df̃(x)‖ ≤ 1
2 for all x ∈ Bδ(x0). [Here

Br(x0) = {x | ‖x− x0‖ < r} is the open r-ball (r > 0) at x0. The closed r-ball is denoted by Br(x0).]
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Note that Df(x) is invertible for all x ∈ Bδ(x0). If x, x′ ∈ Bδ(x0) with f(x) = f(x′), then by the

Mean Value Theorem, we have ‖x′ − x‖ = ‖f̃(x′)− f̃(x)‖ ≤ 1
2‖x
′ − x‖, and hence x = x′. Thus f is

injective on Bδ(x0).

Let V = Bδ(x0) and W = f(V ), then f : V → W is a continuous bijection. Next we show that
W ⊆ Rn is open, and that f−1 : W → V is continuous.

In order to show that W is open, let y ∈W , say y = f(x) where x ∈ V . Since V is open, we can find a
closed r-ball Br(x) ⊆ V . We claim that Bε(y) ⊆W where ε = r/(2‖Df(x0)−1‖). Let y′ ∈ Bε(y) and
define F : Br(x)→ Rn by F (z) = z +Df(x0)−1 (y′ − f(z)). Note that if F (x′) = x′, then y′ = f(x′)
and y′ ∈ W . So we prove that F has a fixed point. First we show that F maps Br(x) to itself. Let
z ∈ Br(x), then

‖F (z)− x‖ ≤ ‖F (z)− F (x)‖+ ‖F (x)− x‖

= ‖f̃(z)− f̃(x)‖+ ‖Df(x0)−1(y′ − y)‖
≤ 1

2‖z − x‖+ ‖Df(x0)−1‖‖y′ − y‖
≤ r

2 + r
2

= r,

and we see that we may view F as a map F : Br(x)→ Br(x). But Br(x) is a complete metric space
and Banach’s Fixed Point Theorem gives that F has a fixed point x′ ∈ Br(x) since F is a contraction:
For z, z′ ∈ Br(x) we have (as above)

‖F (z)− F (z′)‖ = ‖f̃(z)− f̃(z′)‖ ≤ 1
2‖z − z

′‖.

Since x′ ∈ Br(x) ⊆ V and f(x′) = y′, we see that Bε(y) ⊆W , and W is an open subset of Rn.

The same argument shows that if V ′ ⊆ V is open, then f(V ′) is open in Rn and hence f(V ′) ⊆W is
open. But then g = f−1 : W → V is continuous since if V ′ ⊆ V is open, then g−1(V ′) = f(V ′) ⊆ W
is open.

Since Df(x) is invertible for all x ∈ V , and we just proved that f−1 : W → V is continuous, we get by

the proposition that f−1 : W → V is differentiable. Since Df−1(y) = Df
(
f−1(y)

)−1
it follows that

Df−1 : W → L(Rn,Rn) is continuous, and f−1 is C1. Thus f : V →W is a C1-diffeomorphism. �

It is easy to extend the Inverse Function Theorem to a statement about Cr-functions (r ≥ 2) and
smooth functions.

Exercise. With the notation of the last proof, show that ‖g(y′) − g(y′′)‖ ≤ 2‖Df(x0)−1‖‖y′ − y′′‖
for all y′, y′′ ∈W . This gives another proof of the continuity of f−1. �

(I.H., 11. mai 2012)


