THE INVERSE FUNCTION THEOREM

Let R™ denote Euclidean n-space with inner product (x,y) = Xa;y;, and norm |jz|| = +/(z,z).
L(R™ R™) denotes the vector space of linear transformations A: R — R™. We identify L(R™, R™)
with the m x n-matrices, and use the norm given by the inner product (A, B) = tr(AT B) (where tr
denotes the trace of a matrix). If we further identify L(R™ R™) with R™ in the natural way, then
this inner product and norm correspond to the Euclidean inner product and norm above.

If € R® and A € L(R",R™), then ||Az|| < ||Al|[|z|| and if + € R” and y € R™, and we think of yx "
as an element of L(R™,R™), then |jyz " || = ||y|||=]|-

Composition o: L(R™,RP) x L(R",R™) — L(R",R?) is continuous (even smooth). Let GL(n,R) C
L(R™,R™) denote the subset corresponding to the invertible n x n-matrices. This is an open subset
of L(R",R") and the map inv: GL(n,R) — GL(n,R) given by inv(4) = A~!, is continuous (even
smooth) as is seen for example from Cramer’s Rule.

Let U C R™ and V C R™ be open sets. Recall that a function f: U — V is differentiable at o € U
if there is an element A € L(R™, R™) such that
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=0.

If (%) holds, then Az = }in(l) w (t € R) for all z € R™, and A is unique if it exists. If f is
—

differentiable at z, we call A the derivative of f at x¢ and denote it by D f(z). It is easy to see that
if f is differentiable at xq, then f is continuous at xg. (This also follows from the lemma below.) If f
is differentiable at all x € U, we call f differentiable in U.

Lemma. Let U C R™ be open, and let f: U — R™ be a function. Then f is differentiable at
xo € U if and only if there exists a function a: U — L(R™,R™) such that v is continuous at xo and
f(z) = f(xo) + alz)(x — x0) forallz e U.

Proof. If f is differentiable at z, define a: U — L(R™, R™) by

Df (o) + Ha=e)T i o £ 4
a(m) = lz—azoll

D f(z0) if x = xo,
where r(z) = f(z) — f(zo) — Df(zo)(x — z0), * € U. Then clearly f(z) = f(zo) + a(z)(z — xo) for
all z € U. From ||r(z)(x — x0) " || = ||r(z)]|||z — zo|| and () above, we see that « is continuous at x.

Next assume that a function « as in the lemma exists. Then the continuity of « at zy gives that
o h) = feo) —alehl] e + ) — alzo)lh]
h—0 Al h—0 I2|l

Hence f is differentiable at zq. [

< lim ||a(zo + h) — a(zg)| = 0.
h—0

Note that if a function « as in the lemma exists, then Df(xg) = a(xg). If n = m =1 in the lemma,
and f is differentiable at x(, then « is given by

@i
a(z) = {H it z 7 2o

1 (zo0) if x = .

Theorem (The Chain Rule). Let U C R™ and V. C R™ be open sets, and let f: U — V and
g:V = RP. If f is differentiable at xg € U and g is differentiable at f(xo), then go f: U — RP is
differentiable at xg, and

D(go f)(wo) = Dg(f(x0)) o Df(x0).

Proof. By the lemma, there exists a: U — L(R™,R™) such that « is continuous at 2y and f(z) =
f(zo) + a(z)(x — x0) for all z € U; and 5: V — L(R™,RP) continuous at yo = f(xp), such that
1
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9(y) = g(yo) + B(y)(y — yo) for all y € V. For x € U we then have
(g0 f)(@) = (g0 f)(zo) + [B(f(z)) o az)](z — 20),

and v: U — L(R",R?) given by v(x) = S (f(z))oa(z) is continuous at zg since f and « are continuous
at xg, B is continuous at f(zp), and composition is continuous. By the lemma, g o f is differentiable
at xo with D(g o f)(z0) = B (f(z0)) o a(xo) = Dg (f(x0)) o Df(xo). O

We also have that if id: U — U (U open in R™) denotes the identity function given by id(z) = z for
all z € U, then Did(xo) = I (the identity function R™ — R™) for all xy. Also an inclusion i: U — V
(U CV C R" open subsets) has Di(xg) =1 for all zyp € U.

Corollary. Let U,V C R™ be open sets, and let f: U — V be a bijection. If f is differentiable at
zo € U and f~1 is differentiable at f(zo), then Df(zo) is invertible and Df=1 (f(z0)) = Df(xo) .
(Il

Theorem (The Mean Value Theorem). Let U C R™ be open, and let f: U — R™ be a differentiable
inU. If z,2' € U are such that (1 —t)z +tx’ € U for allt € [0,1] and |Df (1 —t)x+t2')|| < M
for all t € 10,1], then ||f(z") — f(x)|| < M|z’ — z||.

Proof. Define ¢: [0,1] = R by ¢(¢) = (f ((1 —t)x +tz’), f(2’) — f(x)). Then ¢ is continuous, and
differentiable on (0,1) with ¢'(t) = (Df ((1 —t)x + ta’) (' — ), f(2’) — f(z)) by the Chain Rule.
Hence ¢(1) — ¢(0) = ¢'(to) for some tg € (0,1). Let z = (1 — tg)x + toz’. Then using the Cauchy—
Schwarz inequality (|{(z,y)| < ||z||||lyll), we get
1£ (") = f(@)]* = &(1) = ¢(0)
(Df(2) (@ — @), f(2") = f(2))
<IDf(E)(" = o) f (') = f(@)]
and hence || f(2') — f(z)|| < [|Df(2)[ll|2" — = < M||2" — zf|. O
Proposition. Let U,V C R™ be open sets, and let f: U — V be a bijection. If f is differentiable at
2o € U with Df(xq) invertible and f=1 is continuous at f(zo), then f=1 is differentiable at f(zo).

Proof. Since f is differentiable at x¢, the lemma gives that there exists a function a: U — L(R™, R™),
continuous at xg, such that f(x) = f(z¢) + a(z)(z — z¢) for all x € U.

Recall that GL(n,R) C L(R™,R") is open. Then from a(xg) = Df(z¢) € GL(n,R) and the continuity
of a at o, we get that there exists an open neighborhood U’ C U of zy such that a(x) € GL(n,R)
forallz € U'. Let g = f~1: V — U and let yo = f(xo) € V. Since f~! is assumed to be continuous
at 9o, there exists an open neighborhood V' C V of yo such that V' C ¢g=1(U’) = f(U’). For y € V'
we have y —yo = f(9(y)) — f(z0) = a(9(y)) (9(y) — z0). Since y € V', g(y) € U’, and a(g(y)) is
invertible. Hence we have

9(y) = 9(yo) +a(9(¥) ™" (v~ vo)
forally € V'. Let 8: V! — L(R™,R") be given by 5(y) = « (g(y))fl. Then 3 is continuous at gq since
g is continuous at yo, « is continuous at x9 = ¢(yo), and inv: GL(n,R) — GL(n,R) is continuous.
Hence g is differentiable at yo, i.e. f~! is differentiable at f(zo). O

Compare this with the corollary above.

Theorem (The Inverse Function Theorem). Let U C R™ be open, and let f: U — R"™ be a C*-
function. If g € U and D f(xo) is invertible, then there exists open sets V.C U and W C f(U) such
that xzg €V and f: V — W is a C'-diffeomorphism.

Proof. Recall that f: U — R" is a C!'-function if f is differentiable in U and Df: U — L(R", R")
is continuous, and that f: V — W is a C!-diffeomorphism if f is C''-function, is invertible, and also
f~!is a C'-function.

We first show that f is injective near zo. Let f: U — R™ be given by f(x) =x—Df(xo) ' f(x). Then
Df(z) =1 —Df(xo) ' Df(x) for all z € U, and f is C'. Since Df(xo) = O and Df: U — L(R",R")
is continuous, we can find a § > 0 such that Bs(zo) C U and ||Df(z)| < 1 for all z € Bs(xo). [Here
B.(z0) = {z | |z — z0|| < 7} is the open r-ball (r > 0) at x9. The closed 7-ball is denoted by B,.(z¢).]



THE INVERSE FUNCTION THEOREM 3

Note that Df(z) is invertible for all z € Bs(xo). If z,2" € Bs(xo) with f(z) = f(2'), then by the
Mean Value Theorem, we have |2’ — z| = || f(z') — f(z)| < %||2’ — ||, and hence z = z’. Thus f is
injective on Bs(zg).

Let V = Bs(zg) and W = f(V), then f: V — W is a continuous bijection. Next we show that
W C R” is open, and that f~': W — V is continuous.

In order to show that W is open, let y € W, say y = f(x) where z € V. Since V is open, we can find a
closed r-ball B,.(z) C V. We claim that B.(y) C W where € = r/(2|[Df(xo) *|). Let ' € Be(y) and
define F: B,(z) — R" by F(z) = 2+ Df(z0) "' (v — f(2)). Note that if F(z) =2/, then y' = f(z')
and y' € W. So we prove that F has a fixed point. First we show that F maps B, (z) to itself. Let
z € B,(z), then

1F(2) — x| <[|F(2) = F(@)[| + | F(z) — «|
17) = F@I + 1D o) ' = v
sllz =2l + 11D f (o) Iy — vl
P43
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and we see that we may view F as a map F: B,.(x) — B,.(z). But B,(z) is a complete metric space
and Banach’s Fixed Point Theorem gives that F' has a fixed point 2’ € B,.(z) since F is a contraction:
For z, 7" € B,(x) we have (as above)

IF(z) = F() = [1f(2) = F()II < 5112 = 'l
Since 2’ € B,.(x) CV and f(z') = y/, we see that B.(y) C W, and W is an open subset of R™.

The same argument shows that if V/ C V is open, then f(V’) is open in R™ and hence f(V') C W is
open. But then g = f~1: W — V is continuous since if V/ C V is open, then g=}(V') = f(V/) C W
is open.

Since D f(x) is invertible for all z € V, and we just proved that f~!: W — V is continuous, we get by
the proposition that f~1: W — V is differentiable. Since Df~1(y) = Df (f_l(y))_1 it follows that
Df~1: W — L(R",R") is continuous, and f~!is C'. Thus f: V — W is a C!-diffeomorphism. O

It is easy to extend the Inverse Function Theorem to a statement about C”-functions (r > 2) and
smooth functions.

Exercise. With the notation of the last proof, show that ||g(y') — g(v")|| < 2||Df(zo) |y’ — ||
for all y/,y"” € W. This gives another proof of the continuity of f~*. O

(LH., 11. mai 2012)



