THE INVERSE FUNCTION THEOREM

Let \mathbb{R}^n denote Euclidean *n*-space with inner product $\langle x, y \rangle = \Sigma x_i y_i$, and norm $||x|| = \sqrt{\langle x, x \rangle}$. $L(\mathbb{R}^n, \mathbb{R}^m)$ denotes the vector space of linear transformations $A \colon \mathbb{R}^n \to \mathbb{R}^m$. We identify $L(\mathbb{R}^n, \mathbb{R}^m)$ with the $m \times n$ -matrices, and use the norm given by the inner product $\langle A, B \rangle = tr(A^\top B)$ (where tr denotes the trace of a matrix). If we further identify $L(\mathbb{R}^n, \mathbb{R}^m)$ with \mathbb{R}^{nm} in the natural way, then this inner product and norm correspond to the Euclidean inner product and norm above.

If $x \in \mathbb{R}^n$ and $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $||Ax|| \leq ||A|| ||x||$ and if $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, and we think of yx^\top as an element of $L(\mathbb{R}^n, \mathbb{R}^m)$, then $||yx^\top|| = ||y|| ||x||$.

Composition \circ : $L(\mathbb{R}^m, \mathbb{R}^p) \times L(\mathbb{R}^n, \mathbb{R}^m) \to L(\mathbb{R}^n, \mathbb{R}^p)$ is continuous (even smooth). Let $GL(n, \mathbb{R}) \subseteq L(\mathbb{R}^n, \mathbb{R}^n)$ denote the subset corresponding to the invertible $n \times n$ -matrices. This is an open subset of $L(\mathbb{R}^n, \mathbb{R}^n)$ and the map inv: $GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$ given by $inv(A) = A^{-1}$, is continuous (even smooth) as is seen for example from Cramer's Rule.

Let $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ be open sets. Recall that a function $f: U \to V$ is differentiable at $x_0 \in U$ if there is an element $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ such that

(*)
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{\|h\|} = 0.$$

If (*) holds, then $Ax = \lim_{t \to 0} \frac{f(x_0+tx)-f(x_0)}{t}$ $(t \in \mathbb{R})$ for all $x \in \mathbb{R}^n$, and A is unique if it exists. If f is differentiable at x_0 , we call A the derivative of f at x_0 and denote it by $Df(x_0)$. It is easy to see that if f is differentiable at x_0 , then f is continuous at x_0 . (This also follows from the lemma below.) If f is differentiable at all $x \in U$, we call f differentiable in U.

Lemma. Let $U \subseteq \mathbb{R}^n$ be open, and let $f: U \to \mathbb{R}^m$ be a function. Then f is differentiable at $x_0 \in U$ if and only if there exists a function $\alpha: U \to L(\mathbb{R}^n, \mathbb{R}^m)$ such that α is continuous at x_0 and $f(x) = f(x_0) + \alpha(x)(x - x_0)$ for all $x \in U$.

Proof. If f is differentiable at x_0 , define $\alpha \colon U \to L(\mathbb{R}^n, \mathbb{R}^m)$ by

$$\alpha(x) = \begin{cases} Df(x_0) + \frac{r(x)(x-x_0)^{\top}}{\|x-x_0\|^2} & \text{if } x \neq x_0\\ Df(x_0) & \text{if } x = x_0, \end{cases}$$

where $r(x) = f(x) - f(x_0) - Df(x_0)(x - x_0)$, $x \in U$. Then clearly $f(x) = f(x_0) + \alpha(x)(x - x_0)$ for all $x \in U$. From $||r(x)(x - x_0)^\top|| = ||r(x)|| ||x - x_0||$ and (*) above, we see that α is continuous at x_0 . Next assume that a function α as in the lemma exists. Then the continuity of α at x_0 gives that

$$\lim_{h \to 0} \frac{\|f(x_0+h) - f(x_0) - \alpha(x_0)h\|}{\|h\|} = \lim_{h \to 0} \frac{\|[\alpha(x_0+h) - \alpha(x_0)]h\|}{\|h\|} \le \lim_{h \to 0} \|\alpha(x_0+h) - \alpha(x_0)\| = 0.$$

Hence f is differentiable at x_0 . \Box

Note that if a function α as in the lemma exists, then $Df(x_0) = \alpha(x_0)$. If n = m = 1 in the lemma, and f is differentiable at x_0 , then α is given by

$$\alpha(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} & \text{if } x \neq x_0\\ f'(x_0) & \text{if } x = x_0. \end{cases}$$

Theorem (The Chain Rule). Let $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ be open sets, and let $f: U \to V$ and $g: V \to \mathbb{R}^p$. If f is differentiable at $x_0 \in U$ and g is differentiable at $f(x_0)$, then $g \circ f: U \to \mathbb{R}^p$ is differentiable at x_0 , and

$$D(g \circ f)(x_0) = Dg(f(x_0)) \circ Df(x_0).$$

Proof. By the lemma, there exists $\alpha: U \to L(\mathbb{R}^n, \mathbb{R}^m)$ such that α is continuous at x_0 and $f(x) = f(x_0) + \alpha(x)(x - x_0)$ for all $x \in U$; and $\beta: V \to L(\mathbb{R}^m, \mathbb{R}^p)$ continuous at $y_0 = f(x_0)$, such that

 $g(y) = g(y_0) + \beta(y)(y - y_0)$ for all $y \in V$. For $x \in U$ we then have

 $(g \circ f)(x) = (g \circ f)(x_0) + [\beta(f(x)) \circ \alpha(x)](x - x_0),$

and $\gamma: U \to L(\mathbb{R}^n, \mathbb{R}^p)$ given by $\gamma(x) = \beta(f(x)) \circ \alpha(x)$ is continuous at x_0 since f and α are continuous at x_0 , β is continuous at $f(x_0)$, and composition is continuous. By the lemma, $g \circ f$ is differentiable at x_0 with $D(g \circ f)(x_0) = \beta(f(x_0)) \circ \alpha(x_0) = Dg(f(x_0)) \circ Df(x_0)$. \Box

We also have that if $id: U \to U$ (U open in \mathbb{R}^n) denotes the identity function given by id(x) = x for all $x \in U$, then $Did(x_0) = I$ (the identity function $\mathbb{R}^n \to \mathbb{R}^n$) for all x_0 . Also an inclusion $i: U \to V$ $(U \subseteq V \subseteq \mathbb{R}^n$ open subsets) has $Di(x_0) = I$ for all $x_0 \in U$.

Corollary. Let $U, V \subseteq \mathbb{R}^n$ be open sets, and let $f: U \to V$ be a bijection. If f is differentiable at $x_0 \in U$ and f^{-1} is differentiable at $f(x_0)$, then $Df(x_0)$ is invertible and $Df^{-1}(f(x_0)) = Df(x_0)^{-1}$.

Theorem (The Mean Value Theorem). Let $U \subseteq \mathbb{R}^n$ be open, and let $f: U \to \mathbb{R}^m$ be a differentiable in U. If $x, x' \in U$ are such that $(1 - t)x + tx' \in U$ for all $t \in [0, 1]$ and $\|Df((1 - t)x + tx')\| \leq M$ for all $t \in [0, 1]$, then $\|f(x') - f(x)\| \leq M \|x' - x\|$.

Proof. Define $\phi: [0,1] \to \mathbb{R}$ by $\phi(t) = \langle f((1-t)x + tx'), f(x') - f(x) \rangle$. Then ϕ is continuous, and differentiable on (0,1) with $\phi'(t) = \langle Df((1-t)x + tx')(x'-x), f(x') - f(x) \rangle$ by the Chain Rule. Hence $\phi(1) - \phi(0) = \phi'(t_0)$ for some $t_0 \in (0,1)$. Let $z = (1-t_0)x + t_0x'$. Then using the Cauchy–Schwarz inequality $(|\langle x, y \rangle| \le ||x|| ||y||)$, we get

$$\|f(x') - f(x)\|^2 = \phi(1) - \phi(0)$$

= $\langle Df(z)(x' - x), f(x') - f(x) \rangle$
 $\leq \|Df(z)(x' - x)\| \|f(x') - f(x)\|$

and hence $||f(x') - f(x)|| \le ||Df(z)|| ||x' - x|| \le M ||x' - x||$. \Box

Proposition. Let $U, V \subseteq \mathbb{R}^n$ be open sets, and let $f: U \to V$ be a bijection. If f is differentiable at $x_0 \in U$ with $Df(x_0)$ invertible and f^{-1} is continuous at $f(x_0)$, then f^{-1} is differentiable at $f(x_0)$.

Proof. Since f is differentiable at x_0 , the lemma gives that there exists a function $\alpha \colon U \to L(\mathbb{R}^n, \mathbb{R}^m)$, continuous at x_0 , such that $f(x) = f(x_0) + \alpha(x)(x - x_0)$ for all $x \in U$.

Recall that $\operatorname{GL}(n,\mathbb{R}) \subseteq \operatorname{L}(\mathbb{R}^n,\mathbb{R}^n)$ is open. Then from $\alpha(x_0) = Df(x_0) \in \operatorname{GL}(n,\mathbb{R})$ and the continuity of α at x_0 , we get that there exists an open neighborhood $U' \subseteq U$ of x_0 such that $\alpha(x) \in \operatorname{GL}(n,\mathbb{R})$ for all $x \in U'$. Let $g = f^{-1} \colon V \to U$ and let $y_0 = f(x_0) \in V$. Since f^{-1} is assumed to be continuous at y_0 , there exists an open neighborhood $V' \subseteq V$ of y_0 such that $V' \subseteq g^{-1}(U') = f(U')$. For $y \in V'$ we have $y - y_0 = f(g(y)) - f(x_0) = \alpha(g(y))(g(y) - x_0)$. Since $y \in V'$, $g(y) \in U'$, and $\alpha(g(y))$ is invertible. Hence we have

 $g(y) = g(y_0) + \alpha (g(y))^{-1} (y - y_0)$

for all $y \in V'$. Let $\beta: V' \to L(\mathbb{R}^n, \mathbb{R}^n)$ be given by $\beta(y) = \alpha (g(y))^{-1}$. Then β is continuous at y_0 since g is continuous at y_0 , α is continuous at $x_0 = g(y_0)$, and inv: $\operatorname{GL}(n, \mathbb{R}) \to \operatorname{GL}(n, \mathbb{R})$ is continuous. Hence g is differentiable at y_0 , i.e. f^{-1} is differentiable at $f(x_0)$. \Box

Compare this with the corollary above.

Theorem (The Inverse Function Theorem). Let $U \subseteq \mathbb{R}^n$ be open, and let $f: U \to \mathbb{R}^n$ be a C^1 -function. If $x_0 \in U$ and $Df(x_0)$ is invertible, then there exists open sets $V \subseteq U$ and $W \subseteq f(U)$ such that $x_0 \in V$ and $f: V \to W$ is a C^1 -diffeomorphism.

Proof. Recall that $f: U \to \mathbb{R}^n$ is a C^1 -function if f is differentiable in U and $Df: U \to L(\mathbb{R}^n, \mathbb{R}^n)$ is continuous, and that $f: V \to W$ is a C^1 -diffeomorphism if f is C^1 -function, is invertible, and also f^{-1} is a C^1 -function.

We first show that f is injective near x_0 . Let $\tilde{f}: U \to \mathbb{R}^n$ be given by $\tilde{f}(x) = x - Df(x_0)^{-1}f(x)$. Then $D\tilde{f}(x) = I - Df(x_0)^{-1}Df(x)$ for all $x \in U$, and \tilde{f} is C^1 . Since $D\tilde{f}(x_0) = \mathcal{O}$ and $D\tilde{f}: U \to L(\mathbb{R}^n, \mathbb{R}^n)$ is continuous, we can find a $\delta > 0$ such that $B_{\delta}(x_0) \subseteq U$ and $\|D\tilde{f}(x)\| \leq \frac{1}{2}$ for all $x \in B_{\delta}(x_0)$. [Here $B_r(x_0) = \{x \mid \|x - x_0\| < r\}$ is the open r-ball (r > 0) at x_0 . The closed r-ball is denoted by $\overline{B}_r(x_0)$.]

Note that Df(x) is invertible for all $x \in B_{\delta}(x_0)$. If $x, x' \in B_{\delta}(x_0)$ with f(x) = f(x'), then by the Mean Value Theorem, we have $||x' - x|| = ||\tilde{f}(x') - \tilde{f}(x)|| \le \frac{1}{2}||x' - x||$, and hence x = x'. Thus f is injective on $B_{\delta}(x_0)$.

Let $V = B_{\delta}(x_0)$ and W = f(V), then $f: V \to W$ is a continuous bijection. Next we show that $W \subseteq \mathbb{R}^n$ is open, and that $f^{-1}: W \to V$ is continuous.

In order to show that W is open, let $y \in W$, say y = f(x) where $x \in V$. Since V is open, we can find a closed r-ball $\overline{B}_r(x) \subseteq V$. We claim that $B_{\epsilon}(y) \subseteq W$ where $\epsilon = r/(2||Df(x_0)^{-1}||)$. Let $y' \in B_{\epsilon}(y)$ and define $F \colon \overline{B}_r(x) \to \mathbb{R}^n$ by $F(z) = z + Df(x_0)^{-1}(y' - f(z))$. Note that if F(x') = x', then y' = f(x') and $y' \in W$. So we prove that F has a fixed point. First we show that F maps $\overline{B}_r(x)$ to itself. Let $z \in \overline{B}_r(x)$, then

$$\begin{aligned} \|F(z) - x\| &\leq \|F(z) - F(x)\| + \|F(x) - x\| \\ &= \|\tilde{f}(z) - \tilde{f}(x)\| + \|Df(x_0)^{-1}(y' - y)\| \\ &\leq \frac{1}{2}\|z - x\| + \|Df(x_0)^{-1}\|\|y' - y\| \\ &\leq \frac{r}{2} + \frac{r}{2} \\ &= r. \end{aligned}$$

and we see that we may view F as a map $F: \overline{B}_r(x) \to \overline{B}_r(x)$. But $\overline{B}_r(x)$ is a complete metric space and Banach's Fixed Point Theorem gives that F has a fixed point $x' \in \overline{B}_r(x)$ since F is a contraction: For $z, z' \in \overline{B}_r(x)$ we have (as above)

$$||F(z) - F(z')|| = ||\tilde{f}(z) - \tilde{f}(z')|| \le \frac{1}{2}||z - z'||.$$

Since $x' \in \overline{B}_r(x) \subseteq V$ and f(x') = y', we see that $B_{\epsilon}(y) \subseteq W$, and W is an open subset of \mathbb{R}^n .

The same argument shows that if $V' \subseteq V$ is open, then f(V') is open in \mathbb{R}^n and hence $f(V') \subseteq W$ is open. But then $g = f^{-1} \colon W \to V$ is continuous since if $V' \subseteq V$ is open, then $g^{-1}(V') = f(V') \subseteq W$ is open.

Since Df(x) is invertible for all $x \in V$, and we just proved that $f^{-1} \colon W \to V$ is continuous, we get by the proposition that $f^{-1} \colon W \to V$ is differentiable. Since $Df^{-1}(y) = Df(f^{-1}(y))^{-1}$ it follows that $Df^{-1} \colon W \to L(\mathbb{R}^n, \mathbb{R}^n)$ is continuous, and f^{-1} is C^1 . Thus $f \colon V \to W$ is a C^1 -diffeomorphism. \Box

It is easy to extend the Inverse Function Theorem to a statement about C^r -functions $(r \ge 2)$ and smooth functions.

Exercise. With the notation of the last proof, show that $||g(y') - g(y'')|| \le 2||Df(x_0)^{-1}|| ||y' - y''||$ for all $y', y'' \in W$. This gives another proof of the continuity of f^{-1} . \Box

(I.H., 11. mai 2012)