

Department of Mathematical Sciences

Examination paper for TMA4195 Mathematical Modeling

Academic contact during examination: Espen R. Jakobsen Phone: 73 59 35 12

Examination date: December 16, 2017

Examination time (from-to): 9:00-13:00

Permitted examination support material: C: Approved simple calculator, Rottman: *Matematisk formelsamling*.

Other information:

There are 8 problems on this exam: 1a) - 1b, 2, 3, 4a) - 4d. Every problem can be solved independently of the solutions of the other problems.

Language: English Number of pages: 4 Number of pages enclosed: 0

Informasjon om trykking av eksamensoppgave		
Originalen er:		
1-sidig 🛛	2-sidig	\boxtimes
sort/hvit 🗆	farger	\boxtimes
skal ha flervalgskjema		

Checked by:

Date Si

Signature

Problem 1 A population model is given in the following form:

$$\begin{cases} \dot{x} = rx\left(1 - \frac{x}{K}\right) - \frac{axy}{c+x}, \\ \dot{y} = -my + \frac{bxy}{c+x}, \end{cases}$$

where r, m, K, a, b, c > 0 are constants and $\dot{x} = \frac{dx}{dt}, \ \dot{y} = \frac{dy}{dt}$.

a) Explain the different terms and quantities in this model. What sort of interaction is there between populations here?

What could these equations model? Give an example.

We now consider a situation where after scaling the model takes the form

(1)
$$\begin{cases} \dot{x} = 2x\left(1 - \frac{x}{2}\right) - \frac{xy}{1+x}, \\ \dot{y} = -y + \frac{2xy}{1+x}. \end{cases}$$

b) Find all the equilibrium points (x_e, y_e) of (1) such that $x_e, y_e \ge 0$, and then determine their stability.

Hint: The right hand side of the first equation has a common factor x.

Problem 2 A physical system is governed by the boundary value problem

$$y'' + f(\varepsilon y) = 0$$
 for $0 < x < 1$, $y(0) = 0$, $y(1) = \varepsilon$,

where f is a smooth function, $0 < \varepsilon < 1$, and $y'' = \frac{\partial^2 y}{\partial x^2}$.

Use perturbation methods to find an approximate solution with $O(\epsilon^2)$ error.

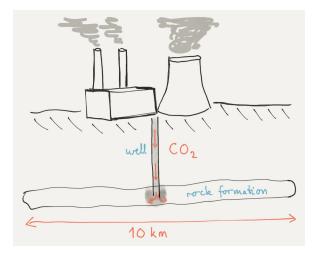
Problem 3 A scaled fluid density ρ satisfies the following initial value problem,

$$\begin{cases} \rho_t + j(\rho)_x = 0, & t > 0, \ x \in \mathbb{R}, \\ \rho(x, 0) = \rho_0(x), & t = 0, \ x \in \mathbb{R}, \end{cases}$$

with $j(\rho) = e^{\rho}$. Find the solution ρ in the following two cases:

(i)
$$\rho_0(x) = \begin{cases} 1, & x < 0, \\ 0, & x > 0, \end{cases}$$
 and (ii) $\rho_0(x) = \begin{cases} 0, & x < 0, \\ 1, & x > 0. \end{cases}$

Problem 4 In CO_2 sequestration, a porous rock formation is used to store CO_2 produced for example by a coal power plant. The gas is compressed and injected into the formation at a vertical well and will diffuse into the surroundings. The gas cannot escape since the rock formation is surrounded by impermeable rock.



Only the pore volume, a constant fraction $\phi \in (0, 1)$ of the total volume, is available for storage, and the mass flux j^* of CO_2 in the rock formation will be driven by pressure differences according to Darcy's law:

$$j^* = -\rho^* \frac{k}{\mu} \nabla p^*,$$

where ρ^* and μ are the mass density and viscosity of CO_2 , k is the permeability of the rock, and ∇p^* is the spatial gradient of the CO_2 pressure p^* .

We will study the case where CO_2 is injected as a gas satisfying the ideal gas law,

$$p^* = \rho^* RT,$$

where R is the gas constant and T is the temperature, which is constant here.

a) Carefully explain how you can use conservation of mass in a shrinking control volume in \mathbb{R}^3 (e.g. balls $B(\vec{x},r) = \{\vec{y} : |\vec{y} - \vec{x}| < r\}$) to show that at any point (x^*, y^*, z^*) inside the rock formation,

$$\phi \rho_{t^*}^* + \nabla \cdot j^* = 0,$$

Page 2 of 4

where $\nabla \cdot j^* = j^*_{x^*} + j^*_{y^*} + j^*_{z^*}$. Then show that

(2)
$$\rho_{t^*}^* = \kappa \,\nabla \cdot (\rho^* \nabla \rho^*) = \kappa \Big[(\rho^* \rho_{x^*}^*)_{x^*} + (\rho^* \rho_{y^*}^*)_{y^*} + (\rho^* \rho_{z^*}^*)_{z^*} \Big],$$

and determine the constant κ .

Hint: You may assume that ρ^* and j^* are smooth.

We will now consider a long thin rock formation the shape of a recangular box of length L = 10 km, height and width H = W = 500 m, and let

$$\varepsilon = \frac{H}{L} = \frac{W}{L} = 0.05.$$

In order not to fracture the rock and reduce the storage capacity of the rock formation, the CO_2 pressure at the injection well is maintained at a moderate level \bar{p} . This will be the maximal CO_2 pressure in the rock formation.

b) Explain why $\bar{\rho} = \frac{\bar{p}}{RT}$ is a natural scale for ρ^* in this problem. Find good scales for x^* , y^* , z^* , and t^* such that after scaling, equation (2) becomes

(3)
$$\rho_t = (\rho \rho_x)_x + \frac{1}{\varepsilon^2} \Big[(\rho \rho_y)_y + (\rho \rho_z)_z \Big]$$

We now assume we are in a situation where $\rho^* = \rho^*(x^*, t^*)$ and the problem is one dimensional. The well is modelled as a point source and equations (2) and (3) reduce to

(4)
$$\rho_{t^*}^* = \kappa \left(\rho^* \rho_{x^*}^*\right)_{x^*},$$

and

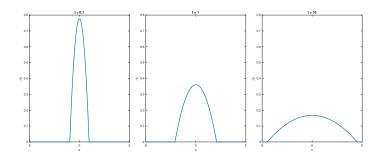
(5)
$$\rho_t = (\rho \rho_x)_x.$$

To study this case, we introduce a function ρ_F defined by

(6)
$$\rho_F(x,t) = \begin{cases} ct^{-\frac{1}{3}} - \frac{1}{6}x^2t^{-1} & \text{for } x^2 \le 6ct^{\frac{2}{3}}, \\ 0 & \text{for } x^2 \ge 6ct^{\frac{2}{3}}. \end{cases}$$

where $c = (\frac{3}{32})^{\frac{1}{3}}$ is chosen such that $\int_{-\infty}^{\infty} \rho_F(x,t) dx = 1$. Note that ρ_F is non-negative and continuous, and its shape is plotted below for increasing times:

Page 4 of 4



c) Show that $\rho_F(x,t)$ is a solution of (5) when t > 0 and $x^2 \neq s(t)^2$ where

$$s(t) = (6c)^{\frac{1}{2}} t^{\frac{1}{3}}.$$

Show that $\rho_F(x,t)$ is a (weak) solution of (5) also at x = s(t) in the sense that it satisfies the corresponding (scaled) conservation law in integral form on any control volume [a, b] where 0 < a < s(t) < b.

[*Hint*: In this case the (scaled) flux is $j = -\rho_F(\rho_F)_x$. One possibility is to use the first part of c).]

Let f(x) be continuous and show that

$$\lim_{t \to 0} \int_{-\infty}^{\infty} \rho_F(x,t) f(x) \, dx = f(0).$$

Explain why $\rho_F(x,t)$ is a fundamental solution of (5).

After an initial test period of 5 days, the CO_2 injection is halted for 3 months. During the test, $M = 10^8$ kg of CO_2 was injected into the rock formation, and measurements showed that the gas was confined within a distance of l = 5 m of the well when the injection stopped.

d) Assume that we are in a situation that can be modelled by equation (4) with $\kappa = 10^{-5} \frac{\text{m}^3}{\text{kg}\cdot\text{s}}$, and that the well is in the center of the (one dimensional) rock formation.

Use the method of intermediate asymptotics to find an approximation of the gas density ρ^* when 3 months has passed.

Does this approximate solution satisfy the correct boundary conditions?

Hint: Scaling! The results in part c) may be useful. Recall that the rock formation has length L = 10 km.