
TMA4195 - MATHEMATICAL MODELING (FALL 2016).

DIESEL PARTICULATE FILTER

Introduction

In a diesel motor, the fuel is injected right before the power stroke. At this stage,
due to compression, the air has reached a temperature sufficiently high for the
ignition to start spontaneously. One of the drawback of this process is that the
combustion is often incomplete and results in emissions of soot, which are compo-
nents of the fuel that have not been burnt completely. These source of pollution is
an important cause of diesel’s harmful health effects. Diesel particulate filters have
been developed to stop the emissions of soot particles into the atmosphere. The
design of such filter is presented in Figure 1. Exhaust gas is sent from the motor
into a honeycomb structure, which consist of aligned channels. There are two type
of channels, the inlet and outlet channels, and an inlet channels is surrounded by
outlet channels. All channels are closed at one end while the other end is open. The
inlet channel is open towards the motor and the outlet channel is open towards the
outside. The channels are separated by a porous material, usually ceramic, which
is permeable to exhaust gas but not to the soot particles. The disposition of the
channels forces all gas emissions to go through the porous walls and, in this way,
the soot particle are stopped.

Figure 1. Diesel particulate filter

1. Filter efficiency

The efficiency of a filter can be measured as the ratio between the amount of
particles that are filtered and the energy that is used to operate the filter. At
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the input and output of the filter, we can measure the velocity and the pressure
of the gas. Q1.1: From this data, can you evaluate the energy consumed by the
filter? Q1.2: List up the parameters that plays a role in the operation of the filter.
Proceed with a dimensional analysis and identify the dimensionless variables. The
number dimensionless variables gives the number of remaining parameters that can
be optimized by a proper design of the filter.

2. Modeling equations for the gas in the channels

The governing equations for the gas moving in the channels are given by the con-
servation of mass,

(2.1) ρt +∇ · (ρu) = 0,

and the conservation of momentum,

(2.2) (ρu)t +∇ · (ρu⊗ u) = f.

The term f consists of all the volumetric forces that are present in this system.
Q2.1: Derive (2.1). Q2.2: Derive (2.2) by starting from Newton’s law of motion
d
dt (mv) = f for a single mass particle. The external forces in f are the pressure
forces and the viscous forces. We assume that the viscous forces acting on unit
surface with orientation n are given by the following constitutive relation,

(2.3) fdiss = λ(∇ · u)n + 2µε(u)n,

where ε(u), the symmetric gradient of the velocity field u, is defined as

ε(u) =
1

2

(
∇u+ (∇u)T

)
.

A fluid that that satisfies the constitutive relation (2.3) is called a Newtonian fluid.
Q2.3: Show that f is given by

(2.4) f = −∇p+ λ∇(∇ · u) + 2µ∇ · ε(u).

You may want to start by the one-dimensional case. At the boundary, we consider
either no-flux boundary conditions or fixed-pressure conditions (in this case, gas
may flow in and out from the domain). Q2.4: Write down the boundary conditions
in both cases.

3. Approximation of the viscous force in the channel

We consider an infinite one-dimensional channel and denote by Ω the cross-section.

u, p, ρ Ω

We assume that the flow is stationary and that u does not vary in the longitudinal
direction. In this case, we expect a linear dependence of the viscous forces with
respect to the average velocity, that is an expression of the form

λ∇(∇ · u) + 2µ∇ · ε(u) = −aū,
where

(3.1) ū =
1

|Ω|

ˆ
Ω

u dx

Q3.1: Find an equation for a. Q3.2: Compute the coefficient a in the case where
Ω is a disk. Q3.3: Compute the coefficient a in the case where Ω is a square, using
the separation of variables. Q3.4: Compute numerically the coefficient a in the
case where Ω is an hexagon.

4. One dimensional approximation of the channel
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We consider the one-dimensional approximation given by

ρt + (ρu)x = 0,(4.1a)

(ρu)t + (ρu2)x = −∂p
∂x
− au.(4.1b)

Q4.1: How these equations relate to a full three-dimensional model? What do u
now represent? What are the approximations that are made?

We model the gas as an ideal gas so that, at constant temperature, the pressure is
proportional to the density,

(4.2) p = rρT,

for some constant r. Q4.2: Rewrite the equations (4.1) using this assumption
Q4.3: Set up the stationary equations and try to solve them numerically Q4.4: Set
up the equations for a small perturbation around the stationary state.

5. Modeling mass loss from the wall

Now, we consider a constant mass loss from the wall.

u, p, ρ Ω

φ

Q5.1: Incorporate this mass loss in the governing equation, for the full three-
dimensional model and the reduced one-dimensional model. Q5.2: Solve numeri-
cally the steady-state equation in the 1D case.

6. The porous media layer

We want to couple the flow from the channel to the porous media. In the porous
media, we assume that we have a Darcy flow, that is, the flux depends linearly on
the pressure gradient,

(6.1) u = −K
µ
∇p,

where K is a symmetric matrix called the permeability tensor. Q6.1: Derive the
governing equation in the porous media, in terms of ρ, u and p. We assume that the
flow is traveling transversely from the channel in the porous media. We consider
given pressures pi and pe on both sides of the porous media and assume that we
have reached the steady-state.

pi pe
ri

re

Cylindrical channel

Γ

pi pe
ri

re

Square channel

Γ

Let us denote by Γ, the surface at the interface between the channel and the porous
media. We consider the incompressible case and define the total incoming flux as

U =

ˆ
Γ

u · n dx.
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Q6.2: Show that the flux U is proportional to the pressure drop pi − pe, that is,
that there exists a constant κ such that

(6.2) U = κ(pi − pe).

Q6.3: Compute the constant κ in the case of a cylindrical channel. Q6.4: Compute
the coefficient κ in the case of a square channel. Q6.5: Consider the case where
we remove the incompressibility assumption.

7. Coupling of the channel with a porous layer

The channel is surrounded by a porous layer through which the gas is going to flow.

Porous material

Channel interior

(ρp, pp, up)

(ρd, pd, ud)

n
Ωp

Ωd

Q7.1: What are the interface conditions between the porous media and the channel?
We consider the stationary case and a given external pressure pe. Let us use the
assumptions and the results obtained in the previous section. Then, the interface
condition simplifies to the continuity of pressure and we use the integrated model
of the flow in the porous layer given by (6.2).

pe
porous material

(u, p)
uin

pin

uout

pout

In addition, we assume that the gas is an ideal gas so that the pressure and the den-
sity are coupled through (4.2). Thus, the unknown are p and u. For the stationary
one-dimensional model, the equations (4.1) then takes the form

(7.1) A(p, u)

(
px
ux

)
= b(p, u),

where A(p, u) ∈ R2×2 and b(p, u) ∈ R2 depend non-linearly on p and u. Q7.2: Find
an expression for A and b. Q7.3: What kind of input/output can we consider?
Q7.4: Set up a numerical method for the case where uin and pout are given.

8. Coupling the inlet and outlet channel

We couple an inlet and an outlet channel. We denote by v and q the flux and
pressure in the outlet channel.

porous material

(u, p)

(v, q)

uin, pin

vout, qout

For simplicity, we can assume that the characteristics of the channels are the same.
Q8.1: Set up the equations for the reduced one-dimensional problem. Q8.2: Try
to solve them numerically.

9. Accumulation of particles
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Let us denote by c the concentration of soot particles, which we define as the
fraction of the mass of soot particle over the total mass of gas. Let us assume that
the soot particles do not modify the property of the flow.

porous material

uin, pin layer of accumulated soot particles

Q9.1: What is the modeling equation that governs c, for the 3D model and the
reduced one-dimensional model. Q9.2: Compute numerically the solution of the
one-dimensional reduced model in the stationary case. Q9.3: Compute the amount
of accumulated particles as a function of t and x

10. Filter clogging

The soot particles accumulate on the porous wall. The cross-section of the channel
is therefore reduced. Moreover, the layer of soot particles affects the permeability
of the porous wall so that the coefficient κ derived in (6.2) is reduced.

ps pi pe

ri

re

rp

porous media

soot particle layer

Let us assume that the permeability of the region of accumulated soot particles
can be determined. Q10.1: Using the same assumptions as in Section 6 when
studying the porous media layer, compute κ as a function of rp. We consider again
the one-dimensional reduced model. At a given x, the accumulated mass of soot
particles is directly related the radius rp. Q10.2: Couple the flow equations with
the particle transport equation through κ. Q10.3: Solve numerically the equations
that you obtain and compute the loss of efficiency of the filter a function of time.
We consider now a more general geometry for the channel. We denote the evolving
domain which contains the accumulated particles by Ωs(t) and its interface with the
interior of the channel by Γs(t). We represent the interface Γs(t) as a parametric
curve defined through the function x(τ, t) for the parameter τ ∈ [0, 1].

Ωp

Ωs(t)

ps pe

Γe

Γs(t) = {x(τ, t) | τ ∈ [0, 1]}

Let us assume that the gas is incompressible. Q10.4: Derive modeling equations
for the pressure in the porous media and the accumulated soot region and for the
curve x(t, s). Q10.5: Design and implement a numerical scheme to solve these
equations.


