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Background

I Loss of injectivity in polymer enhanced oil recovery

I Master projects at SINTEF

I Volkswagen emissions scandal
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Filter design

I Diesel motor emits soot particles

I Heath hazard

I Exhaust gas enters honeycomb structure and it forces to
flow through a porous media
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Filter efficiency

I Amount of particles that are filtered versus energy that is
used to operate the filter.

I Energy sources:

dU = δW︸︷︷︸
work

+ δQ︸︷︷︸
heat

I The energy U of the system is composed of

I Kinetic energy
I Internal energy
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Filter efficiency (2)

I Energy balance

uin, pin, Tin

uout, pout, Tout

I Q: Evaluate the energy used by filter from input/output
variables

I Ideal gas

I PVT relation: pV = nRT
I Internal energy: U = cvnRT . (no interaction between

the particles)

I Dimensional analysis

I List up parameters: pressure drop, uin, uout,
Permeability K ...

I Q: Identify the filter design parameters.
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Modeling equations

I Conservation laws
I Conservation of mass
I Conservation of momentum
I Conservation of energy

I Conservation of mass:

ρt +∇ · (ρu) = 0

Ω

{
rate of
change

}
=

{
what
comes

in

}
−

{
what
comes

out

}
I Hence,

d

dt

∫
Ω

ρ dx = −
∫
∂Ω

ρu · n dx

implies ∫
Ω

∂ρ

∂t
dx = −

∫
Ω

∇ · (ρu) dx
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Conservation of momentum

momentum = mv

d

dt
(mv) = f
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Conservation of momentum

I Conservation of momentum for a fluid

(ρu)t +∇ · (ρu⊗ u) = f.

Q: Derive this equation starting from Newton’s law.

I Here, f is an external volumetric force and

u⊗ u =
(
u1u1 u2u1 u3u1
u1u2 u2u2 u3u2
u1u3 u2u3 u3u3

)
,

∇ · (ρu⊗ u) =

(
∂

∂x1
(ρu1u1) + ∂

∂x2
(ρu1u2) + ∂

∂x3
(ρu1u3)

∂
∂x1

(ρu2u1) + ∂
∂x2

(ρu2u2) + ∂
∂x3

(ρu2u3)

∂
∂x1

(ρu3u1) + ∂
∂x2

(ρu3u2) + ∂
∂x3

(ρu3u3)

)
I Divergence theorem for matrices∫

Ω

∇ · A(x) dx =

∫
∂Ω

A(x)n dx
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Newton and Lagrange

mẍ = f

I Introduce kinetic and potential energy

Ekin =
1

2
mẋ2 and Epot(x)

I Set up the Lagrangian

L =

∫ T

0

(Ekin − Epot) dt

I The equation of motion are given by the variation
with respect to particle path

δL = 0

I We have

δL =

∫ T

0

mx · δẋ dt−
∫ T

0

∇Epot(x) · δx dt

=

∫ T

0

(−mẍ+∇Epot(x)) · δx dt

I Hence,

mẍ = ∇Ekin
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The volumetric forces in the system

I The external forces are
I The pressure

I Viscous forces

fdiss = λ(∇ · u)n+ µ(∇u+∇(u)T )n,

Test surface S

S

nfdiss

Moving plates

x2

x1

u1(x, y) = vy, u2(x, y) = 0

∇u =

(
0 v
0 0

)
, ∇ · u = tr(∇u), n =

(
0
−1

)

fdiss = µ

(
0 v
v 0

)(
0
−1

)
= −µv

(
1
0

)
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Viscous forces

I If u = constant, then fdiss = 0

I Let us consider the velocity field u of rotational motion,
we can prove that

u(t, x) = A(t)x,

where A(t) is skew-symmetric, that is, AT = −A.

Hence,
∇u = A and

fdiss = λ tr(A)n + µ(A+ AT )n

= 0.

The viscous force vanishes for such rigid body motion.
I Viscous energy

Ediss =

∫
Ω

(
λ

2
tr(ε)2 + µ ‖ε‖2) dx

where ε is symmetric tensor

ε =
1

2
(∇u+∇(u)T ).

10
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Conservation of momentum and angular

momentum

I Newton’s third law

When one body exerts a force on a
second body, the second body
simultaneously exerts a force equal
in magnitude and opposite in
direction on the first body

mi

mj

fj→i

fi→j

I It implies that the total force and the total torque is zero∑
i,j

fi,j = 0 and
∑
i,j

ri × fi,j = 0

I For a closed system, we have the conservation of
momentum and of angular momentum

d

dt

∑
i

(mivi) = 0 and
d

dt

∑
i

miri × vi = 0

11
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Approximation of the viscous force

I Infinite channel in a stationary state:

u, p, ρ Ω

∆p̄

ū

I Define average values over the cross-section,

ū =
1

|Ω|

∫
Ω

u dx and p̄ =
1

|Ω|

∫
Ω

p dx

Q: Express fdiss as a function of ū. Show that
fdiss = −aū, for a constant a that depends only on the
shape Ω. You have to compute the velocity profile.

I Similar approach to obtain Darcy approximation
ū = −K ∆p̄

∆x
.

I Q: Compute the coefficient a for Ω given by a cylinder, a
square or an hexagon.

12
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fdiss = −aū, for a constant a that depends only on the
shape Ω. You have to compute the velocity profile.

I Similar approach to obtain Darcy approximation
ū = −K ∆p̄

∆x
.

I Q: Compute the coefficient a for Ω given by a cylinder, a
square or an hexagon.

12



Approximation of the viscous force

I Infinite channel in a stationary state:

u, p, ρ Ω

∆p̄

ū
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One dimensional approximation

Instead of considering

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u) = −∇p− au,

we consider the one dimensional approximation

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = −∂p
∂x
− au.

Q: How are the one-dimensional equations obtained? What
are the approximations that we are doing?

13



One dimensional approximation (2)

I We consider an ideal gas law, with constant temperature.
Then p is proportional to ρ,

p = bρ

Q: Setup the steady state equations. What are the
boundary conditions?

I Q: Solve numerically the equations.

I Q: Set up equations for the time-dependent perturbed
solution from the steady-state.

p = p0 + εp̂ and u = u0 + εû.

I After that, we only consider steady-state.

14
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mass loss from the walls

I We incorporate in the model mass loss along the walls

u, p, ρ Ω

φ

[φ] = kg s−1 m−2

I Q: How are the full 3D equations changed?

I Q: How are the 1D equations changed?

I Q: Solve numerically the 1D equations in the stationary
case.
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Porous media

I Linear relation between velocity and
pressure drop

u = −K
µ

∆p

∆x

I We approximate the flux as

u = −K
µ
∇p

The scalar (or matrix) K is called the
permeability.

I The Darcy relation replaces the
momentum equation. Note that the
kinetic energy is neglected in a porous
media.

I Q: Derive the governing equation for a
porous media.
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Upscaling of the porous media layer

I We want to avoid solving the partial differential equations
the porous media layer.

I Let pi and pe be the internal and external pressure, and

U =

∫
Γ

u · n dx

pi pe
ri

re

Cylindrical channel

Γ

pi pe
ri

re

Square channel

Γ

I Q: Find the relation between U and pe − pi for the steady
state. Compute κ for a cylinder and a square.

U = κ(pe − pi)
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Coupling of the channel with a porous layer

I At the interface, we should have conservation of mass
and force balance. Q: What are the interface condition?

Porous material

Channel interior

(ρp, pp, up)

(ρd, pd, ud)

n
Ωp

Ωd

I We consider pressure continuity at the interface
(consistent with previous approximation). Q: Set up the
one dimensional equations.

pe
porous material

(u, p)
uin
pin

uout
pout
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Coupling of the channel with a porous layer (2)

I In the stationary case, the equations take the form

A(p, u)

(
px
ux

)
= b(p, u).

I This is a first order (non-linear) ordinary differential
system.

I Q: What kind of input/output do we want to consider?

I Q: Solve the equations numerically.
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Coupling the inlet and outlet channel

I We can now couple inlet and outlet channels

I We introduce the pressure q and velocity v in the outlet
channel.

porous material

(u, p)

(v, q)

uin, pin

vout, qout

I Q: Setup the equations for the one dimensional model in
the stationary case.

A(p, u, q, v)


px
ux
qx
vx

 = b(p, u, q, v).

I Q: Solve those equations numerically.

20



Coupling the inlet and outlet channel

I We can now couple inlet and outlet channels
I We introduce the pressure q and velocity v in the outlet

channel.

porous material

(u, p)

(v, q)

uin, pin

vout, qout

I Q: Setup the equations for the one dimensional model in
the stationary case.

A(p, u, q, v)


px
ux
qx
vx

 = b(p, u, q, v).

I Q: Solve those equations numerically.

20



Coupling the inlet and outlet channel

I We can now couple inlet and outlet channels
I We introduce the pressure q and velocity v in the outlet

channel.

porous material

(u, p)

(v, q)

uin, pin

vout, qout

I Q: Setup the equations for the one dimensional model in
the stationary case.

A(p, u, q, v)


px
ux
qx
vx

 = b(p, u, q, v).

I Q: Solve those equations numerically.

20



Coupling the inlet and outlet channel

I We can now couple inlet and outlet channels
I We introduce the pressure q and velocity v in the outlet

channel.

porous material

(u, p)

(v, q)

uin, pin

vout, qout

I Q: Setup the equations for the one dimensional model in
the stationary case.

A(p, u, q, v)


px
ux
qx
vx

 = b(p, u, q, v).

I Q: Solve those equations numerically.
20



Accumulation of particles

I We denote by c the concentration of soot particles (c =
mass(soot)/mass(gas))

porous material

uin, pin layer of accumulated soot particles

I Q: What is the modeling equation that governs c, for the
3D model and the one-dimensional model.

I Q: Find a formula for the amount of accumulated
particles as a function of t and x

I Q: Compute this value numerically (one-dimensional
case).

21
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Filter clogging

I The soot accumulates on the porous wall, reducing the
efficiency of the filter.

I The layer of accumulated soot is porous. We assume that
it has a given constant permeability Ks.

ps pi pe

ri
re

rp

porous media

soot particle layer

I Q: Compute the new coefficient κ.

U = κ(pe − pi)
I The coefficient κ depends on the amount of accumulated

soot and the amount of accumulated soot depends on κ.
Q: Set up the coupled equations.
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Filter clogging - general cross-section

I For a general geometry of the cross-section, the particles
do not accumulate uniformly at the interface

Ωp

Ωs(t)

ps pe

Γe

Γs(t)

with
Γs(t) = {x(τ, t) | τ ∈ [0, 1]}

I Q: Derive the equation for x(τ, t). Find an equation that
guarantees the conservation of the mass of soot.

I Q: Design and implement a scheme to solve the
governing equations for this problem.
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