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Filter design

» Diesel motor emits soot particles
» Heath hazard

» Exhaust gas enters honeycomb structure and it forces to
flow through a porous media
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» Amount of particles that are filtered versus energy that is
used to operate the filter.

» Energy sources:

dU = §W + 6Q

work heat

» The energy U of the system is composed of
» Kinetic energy
» Internal energy
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Filter efficiency (2)

» Energy balance

S A Uouty Pouts Tout
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» Q: Evaluate the energy used by filter from input/output
variables
» |deal gas
» PVT relation: pV =nRT
» Internal energy: U = ¢,nRT. (no interaction between
the particles)
» Dimensional analysis
» List up parameters: pressure drop, Uin, Uout,
Permeability K ...
» Q: Identify the filter design parameters.
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» Conservation laws
» Conservation of mass
» Conservation of momentum
» Conservation of energy

» Conservation of mass:

pi+V - (pu) =0
rate of what what
@ {change} = {co.mes} — {comes}
In out
» Hence,

implies
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momentum = muv

i(mv) =

dt
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Conservation of momentum

» Conservation of momentum for a fluid
(pu)e+ V- (pu@u) = f.

Q: Derive this equation starting from Newton's law.
» Here, f is an external volumetric force and

ulul  uU2Ul U3UL
)

u ® u = <u1u2 uguz  U3U2

ulju3z  U2U3  UU3

z3
V- (pu X U,) = (821(91!2711) + %(Puzuz) + %(PUWLB)

%(Pulul) + %(Puluz) + 52 (pu1us)
%(Pu‘%“l) + %(puguz) + %,B(PUSHB)

» Divergence theorem for matrices

/QV-A(x) dz = /m A(z)n dz
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Newton and Lagrange

» Introduce kinetic and potential energy

1 R
Ekin = *miTZ and Epot(l‘

2
Set up the Lagrangian

T
L= / (Ekin - Epot) dt
0

» The equation of motion are given by the variation
with respect to particle path
0L =0

v

> We have
T T
0L = / mz - 0 dt — / VEyo(z) - 0z dt
0 0
T
_ / (—mi + V Epeu(2)) - 6z di
0

» Hence,
mi = VEkin
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The volumetric forces in the system

» The external forces are
» The pressure
» Viscous forces

fdiss = )\(V : u)n + M(VU + V(U)T)TL,

Test surface S Moving plates
/ - _— i
—> -
Vs S
Jiss n uy(z,y) = vy, wua(z,y)=0

w(g 8) V-u = tr(Vu), n<_01>

jamn( ) (5) - ()
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Viscous forces

» If u = constant, then fgis = 0
» Let us consider the velocity field u of rotational motion,
we can prove that

u(t,z) = A(t)x,
where A(t) is skew-symmetric, that is, AT = —A. Hence,
Vu= A and
faiss = Mtr(A)n + p(A+ AN)n
=0.
The viscous force vanishes for such rigid body motion.
» Viscous energy

A
Eiss = /(E tr(e)” + p|le]|*) da
Q
where € is symmetric tensor

€= %(Vu +V(u)™).

10
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Conservation of momentum and angular

momentum

» Newton's third law

m:
When one body exerts a force on a /.{f '
second body, the second body I
simultaneously exerts a force equal 0/\

in magnitude and opposite in i—j
direction on the first body &

» It implies that the total force and the total torque is zero

E fi’j =0 and E r; X fz',j =0
2% i,
» For a closed system, we have the conservation of
momentum and of angular momentum

d d
a Z(mﬂ)l) =0 and a Zmin XV, = 0

t 11
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Approximation of the viscous force

» Infinite channel in a stationary state:
U
— u,p, p @

Ap

» Define average values over the cross-section,

1/ 1
4 =— [ udr and p:—/pdx
€2 Ja €2 Ja

Q: Express f4iss as a function of u. Show that
fdiss = —au, for a constant a that depends only on the
shape ). You have to compute the velocity profile.

» Similar approach to obtain Darcy approximation
u=-K22.

» Q: Compute the coefficient a for () given by a cylinder, a
square or an hexagon.

12



One dimensional approximation

Instead of considering
(pu)e +V - (pu®@u) = =Vp — au,

we consider the one dimensional approximation

Pt + (pu)fﬁ = O)
0
(pu)r + (pu?), = =52 — a.

Q: How are the one-dimensional equations obtained? What
are the approximations that we are doing?

13



One dimensional approximation (2)

» We consider an ideal gas law, with constant temperature.
Then p is proportional to p,

p=bp

Q: Setup the steady state equations. What are the
boundary conditions?
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One dimensional approximation (2)

» We consider an ideal gas law, with constant temperature.
Then p is proportional to p,
p="bp

Q: Setup the steady state equations. What are the
boundary conditions?
» Q: Solve numerically the equations.

» Q: Set up equations for the time-dependent perturbed
solution from the steady-state.

p=po+ep and u=uy+cu.

» After that, we only consider steady-state.

14
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mass loss from the walls

We incorporate in the model mass loss along the walls

J J J U9

AR

6] = kes *m

v

» Q: How are the full 3D equations changed?
» Q: How are the 1D equations changed?

v

Q: Solve numerically the 1D equations in the stationary
case.

15
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Porous media

» Linear relation between velocity and
pressure drop

_ KAp
 u Az
» We approximate the flux as
K
u=——Vp

The scalar (or matrix) K is called the
permeability.

» The Darcy relation replaces the
momentum equation. Note that the

kinetic energy is neglected in a porous %

media.

» Q: Derive the governing equation for a
porous media.

16



Upscaling of the porous media layer

» We want to avoid solving the partial differential equations
the porous media layer.
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Upscaling of the porous media layer

» We want to avoid solving the partial differential equations
the porous media layer.
» Let p; and p. be the internal and external pressure, and

U:/u-nda:
r

’
Di épe
/

/

7
////////////////

Cylindrical channel Square channel

» Q: Find the relation between U and p. — p; for the steady
state. Compute r for a cylinder and a square.

U= ’%(pe - pz)

17



Coupling of the channel with a porous layer

» At the interface, we should have conservation of mass
and force balance. Q: What are the interface condition?
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Coupling of the channel with a porous layer

» At the interface, we should have conservation of mass
and force balance. Q: What are the interface condition?

P fiiiisis U, A Q Z
orous material 77777777 \Pp; Py Up) A3
o oy %

.
Zsiiiis77

Qd

00 s00000070000700000000000050550505507

Channel interior (pd7pd, Uq)

» We consider pressure continuity at the interface
(consistent with previous approximation). Q: Set up the
one dimensional equations.

Pe
77777 7777777777 7777777777777777777777777
s E??5?5?5?5?55?5%%?5555; porous materlal:;;;:;;,/,/,/,,,,/,/,W, U
n out
- (Ua p)
pln pout
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Coupling of the channel with a porous layer (2)

» In the stationary case, the equations take the form

A(p,u) (Zx) =b(p,u).
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Coupling of the channel with a porous layer (2)

v

In the stationary case, the equations take the form

A(p,u) (Zx) =b(p,u).

T

v

This is a first order (non-linear) ordinary differential
system.

v

Q: What kind of input/output do we want to consider?

» Q: Solve the equations numerically.

19
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Coupling the inlet and outlet channel

» We can now couple inlet and outlet channels
» We introduce the pressure ¢ and velocity v in the outlet

channel.
(U, (]) —> Uout, Gout
T, DOTOUS Materal 7.,/ .7/,
Uin, Pin —> (u,p)

» Q: Setup the equations for the one dimensional model in
the stationary case.

Dz

Uy

A(p, U7Q7U) :b(p, U/,q,’U).

x
Vg

» Q: Solve those equations numerically.

20



Accumulation of particles

» We denote by ¢ the concentration of soot particles (¢ =
mass(soot)/mass(gas))
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Accumulation of particles

» We denote by ¢ the concentration of soot particles (¢ =

mass(soot)/mass(gas))

/////////////////////////////////////////////////////
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Uin, Pin —> layer of accumulated soot particles

» Q: What is the modeling equation that governs c, for the
3D model and the one-dimensional model.

» Q: Find a formula for the amount of accumulated
particles as a function of t and x
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Accumulation of particles

We denote by ¢ the concentration of soot particles (¢ =

mass(soot)/mass(gas))

v

/////////////////////////////////////////////////////
/////////////////////////////////////////////////////

Uin, Pin —> layer of accumulated soot particles

v

Q: What is the modeling equation that governs c, for the
3D model and the one-dimensional model.

v

Q: Find a formula for the amount of accumulated
particles as a function of t and x

v

Q: Compute this value numerically (one-dimensional
case).

21



Filter clogging

» The soot accumulates on the porous wall, reducing the
efficiency of the filter.
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Filter clogging

» The soot accumulates on the porous wall, reducing the
efficiency of the filter.

» The layer of accumulated soot is porous. We assume that
it has a given constant permeability K.

porous media

soot particle layer

» Q: Compute the new coefficient k.
U = 'Li(pe - pz)
» The coefficient x depends on the amount of accumulated

soot and the amount of accumulated soot depends on k.
Q: Set up the coupled equations.

22



Filter clogging - general cross-section

» For a general geometry of the cross-section, the particles
do not accumulate uniformly at the interface

with

Ls(t) = {a(r,t) [ 7 € [0, 1]}
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Filter clogging - general cross-section

» For a general geometry of the cross-section, the particles
do not accumulate uniformly at the interface
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with
Ls(t) = A{z(r,t) [ 7 € [0,1]}

» Q: Derive the equation for x(7,t). Find an equation that
guarantees the conservation of the mass of soot.
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Filter clogging - general cross-section

» For a general geometry of the cross-section, the particles
do not accumulate uniformly at the interface

A R Ay
000000500050005025007:
77

1)277222227222277222777277)
27777

7
F
e 7

['s(t) Pe

[

with
Ly(t) = {z(r,t) | T € [0,1]}
» Q: Derive the equation for x(7,t). Find an equation that
guarantees the conservation of the mass of soot.

» Q: Design and implement a scheme to solve the
governing equations for this problem.
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