Mathematical Modeling
 Project fall 2016

Diesel Particulate Filter

Background

- Loss of injectivity in polymer enhanced oil recovery

Background

- Loss of injectivity in polymer enhanced oil recovery

कol Adsorbed polymer on rock surfac
E. Entangled polymer chain

- Mechanically trapped polymer junk
- Master projects at SINTEF

Background

- Loss of injectivity in polymer enhanced oil recovery

ool Adsorbed polymer on rock surface
E. Entangled polymer chain
- Mechanically trapped polymer junk
- Master projects at SINTEF
- Volkswagen emissions scandal

Filter design

- Diesel motor emits soot particles

Filter design

- Diesel motor emits soot particles
- Heath hazard

Filter design

- Diesel motor emits soot particles
- Heath hazard
- Exhaust gas enters honeycomb structure and it forces to flow through a porous media

Filter efficiency

- Amount of particles that are filtered versus energy that is used to operate the filter.

Filter efficiency

- Amount of particles that are filtered versus energy that is used to operate the filter.
- Energy sources:

$$
d U=\underbrace{\delta W}_{\text {work }}+\underbrace{\delta Q}_{\text {heat }}
$$

Filter efficiency

- Amount of particles that are filtered versus energy that is used to operate the filter.
- Energy sources:

$$
d U=\underbrace{\delta W}_{\text {work }}+\underbrace{\delta Q}_{\text {heat }}
$$

- The energy U of the system is composed of

Filter efficiency

- Amount of particles that are filtered versus energy that is used to operate the filter.
- Energy sources:

$$
d U=\underbrace{\delta W}_{\text {work }}+\underbrace{\delta Q}_{\text {heat }}
$$

- The energy U of the system is composed of
- Kinetic energy

Filter efficiency

- Amount of particles that are filtered versus energy that is used to operate the filter.
- Energy sources:

$$
d U=\underbrace{\delta W}_{\text {work }}+\underbrace{\delta Q}_{\text {heat }}
$$

- The energy U of the system is composed of
- Kinetic energy
- Internal energy

Filter efficiency (2)

- Energy balance

Filter efficiency (2)

- Energy balance

- Q: Evaluate the energy used by filter from input/output variables

Filter efficiency (2)

- Energy balance

- Q: Evaluate the energy used by filter from input/output variables
- Ideal gas

Filter efficiency (2)

- Energy balance
$u_{\text {in }}, p_{\text {in }}, T_{\text {in }}$

- Q: Evaluate the energy used by filter from input/output variables
- Ideal gas
- PVT relation: $p V=n R T$

Filter efficiency (2)

- Energy balance
$u_{\text {in }}, p_{\text {in }}, T_{\text {in }}$

- Q: Evaluate the energy used by filter from input/output variables
- Ideal gas
- PVT relation: $p V=n R T$
- Internal energy: $U=c_{v} n R T$. (no interaction between the particles)

Filter efficiency (2)

- Energy balance
$u_{\text {in }}, p_{\text {in }}, T_{\text {in }}$

- Q: Evaluate the energy used by filter from input/output variables
- Ideal gas
- PVT relation: $p V=n R T$
- Internal energy: $U=c_{v} n R T$. (no interaction between the particles)
- Dimensional analysis

Filter efficiency (2)

- Energy balance

$u_{\text {in }}, p_{\text {in }}, T_{\text {in }}$

- Q: Evaluate the energy used by filter from input/output variables
- Ideal gas
- PVT relation: $p V=n R T$
- Internal energy: $U=c_{v} n R T$. (no interaction between the particles)
- Dimensional analysis
- List up parameters: pressure drop, $u_{\text {in }}, u_{\text {out }}$, Permeability K ...

Filter efficiency (2)

- Energy balance

$u_{\text {in }}, p_{\text {in }}, T_{\text {in }}$

- Q: Evaluate the energy used by filter from input/output variables
- Ideal gas
- PVT relation: $p V=n R T$
- Internal energy: $U=c_{v} n R T$. (no interaction between the particles)
- Dimensional analysis
- List up parameters: pressure drop, $u_{\text {in }}, u_{\text {out }}$, Permeability K...
- Q: Identify the filter design parameters.

Modeling equations

- Conservation laws
- Conservation of mass
- Conservation of momentum
- Conservation of energy

Modeling equations

- Conservation laws
- Conservation of mass
- Conservation of momentum
- Conservation of energy
- Conservation of mass:

$$
\begin{gathered}
\rho_{t}+\nabla \cdot(\rho u)=0 \\
\left\{\begin{array}{c}
\text { rate of } \\
\text { change }
\end{array}\right\}=\left\{\begin{array}{c}
\text { what } \\
\text { comes } \\
\text { in }
\end{array}\right\}-\left\{\begin{array}{c}
\text { what } \\
\text { comes } \\
\text { out }
\end{array}\right\}
\end{gathered}
$$

Modeling equations

- Conservation laws
- Conservation of mass
- Conservation of momentum
- Conservation of energy
- Conservation of mass:

$$
\rho_{t}+\nabla \cdot(\rho u)=0
$$

$$
\left\{\begin{array}{c}
\text { rate of } \\
\text { change }
\end{array}\right\}=\left\{\begin{array}{c}
\text { what } \\
\text { comes } \\
\text { in }
\end{array}\right\}-\left\{\begin{array}{c}
\text { what } \\
\text { comes } \\
\text { out }
\end{array}\right\}
$$

- Hence,

$$
\frac{d}{d t} \int_{\Omega} \rho d x=-\int_{\partial \Omega} \rho u \cdot \boldsymbol{n} d x
$$

implies

$$
\int_{\Omega} \frac{\partial \rho}{\partial t} d x=-\int_{\Omega} \nabla \cdot(\rho u) d x
$$

Conservation of momentum

Conservation of momentum

momentum $=m \boldsymbol{v}$

$$
\frac{d}{d t}(m \boldsymbol{v})=\boldsymbol{f}
$$

Conservation of momentum

- Conservation of momentum for a fluid

$$
(\rho u)_{t}+\nabla \cdot(\rho u \otimes u)=f
$$

Q: Derive this equation starting from Newton's law.

Conservation of momentum

- Conservation of momentum for a fluid

$$
(\rho u)_{t}+\nabla \cdot(\rho u \otimes u)=f
$$

Q: Derive this equation starting from Newton's law.

- Here, f is an external volumetric force and

$$
\begin{gathered}
u \otimes u=\left(\begin{array}{lll}
u_{1} u_{1} & u_{2} u_{1} & u_{3} u_{1} \\
u_{1} u_{2} & u_{2} u_{2} & u_{3} u_{2} \\
u_{1} u_{3} & u_{2} u_{3} & u_{3} u_{3}
\end{array}\right), \\
\nabla \cdot(\rho u \otimes u)=\left(\begin{array}{l}
\frac{\partial}{\partial x_{1}}\left(\rho u_{1} u_{1}\right)+\frac{\partial}{\partial x_{2}}\left(\rho u_{1} u_{2}\right)+\frac{\partial}{\partial x_{3}}\left(\rho u_{1} u_{3}\right) \\
\frac{\partial}{\partial x_{1}}\left(\rho u_{2} u_{1}\right)+\frac{\partial}{\partial x_{2}}\left(\rho u_{2} u_{2}\right)+\frac{\partial}{\partial x_{3}}\left(\rho u_{2} u_{3}\right) \\
\frac{\partial}{\partial x_{1}}\left(\rho u_{3} u_{1}\right)+\frac{\partial}{\partial x_{2}}\left(\rho u_{3} u_{2}\right)+\frac{\partial}{\partial x_{3}}\left(\rho u_{3} u_{3}\right)
\end{array}\right)
\end{gathered}
$$

Conservation of momentum

- Conservation of momentum for a fluid

$$
(\rho u)_{t}+\nabla \cdot(\rho u \otimes u)=f
$$

Q: Derive this equation starting from Newton's law.

- Here, f is an external volumetric force and

$$
\begin{gathered}
u \otimes u=\left(\begin{array}{lll}
u_{1} u_{1} & u_{2} u_{1} & u_{3} u_{1} \\
u_{1} u_{2} & u_{2} u_{2} & u_{3} u_{2} \\
u_{1} u_{3} & u_{2} u_{3} & u_{3} u_{3}
\end{array}\right), \\
\nabla \cdot(\rho u \otimes u)=\left(\begin{array}{l}
\frac{\partial}{\partial x_{1}}\left(\rho u_{1} u_{1}\right)+\frac{\partial}{\partial x_{2}}\left(\rho u_{1} u_{2}\right)+\frac{\partial}{\partial x_{3}}\left(\rho u_{1} u_{3}\right) \\
\frac{\partial}{\partial x_{1}}\left(\rho u_{2} u_{1}\right)+\frac{\partial}{\partial x_{2}}\left(\rho u_{2} u_{2}\right)+\frac{\partial}{\partial x_{3}}\left(\rho u_{2} u_{3}\right) \\
\frac{\partial}{\partial x_{1}}\left(\rho u_{3} u_{1}\right)+\frac{\partial}{\partial x_{2}}\left(\rho u_{3} u_{2}\right)+\frac{\partial}{\partial x_{3}}\left(\rho u_{3} u_{3}\right)
\end{array}\right)
\end{gathered}
$$

- Divergence theorem for matrices

$$
\int_{\Omega} \nabla \cdot A(x) d x=\int_{\partial \Omega} A(x) \boldsymbol{n} d x
$$

Newton and Lagrange

- Introduce kinetic and potential energy

$$
E_{\mathrm{kin}}=\frac{1}{2} m \dot{x}^{2} \quad \text { and } \quad E_{\mathrm{pot}}(x)
$$

$m \ddot{x}=f$

Newton and Lagrange

- Introduce kinetic and potential energy

$$
E_{\text {kin }}=\frac{1}{2} m \dot{x}^{2} \quad \text { and } \quad E_{\text {pot }}(x)
$$

- Set up the Lagrangian

$$
\mathcal{L}=\int_{0}^{T}\left(E_{\mathrm{kin}}-E_{\mathrm{pot}}\right) d t
$$

$m \ddot{x}=f$

Newton and Lagrange

- Introduce kinetic and potential energy

$$
E_{\text {kin }}=\frac{1}{2} m \dot{x}^{2} \quad \text { and } \quad E_{\text {pot }}(x)
$$

- Set up the Lagrangian

$$
\mathcal{L}=\int_{0}^{T}\left(E_{\text {kin }}-E_{\mathrm{pot}}\right) d t
$$

- The equation of motion are given by the variation with respect to particle path

$$
m \ddot{x}=f
$$

$$
\delta \mathcal{L}=0
$$

Newton and Lagrange

- Introduce kinetic and potential energy

$$
E_{\text {kin }}=\frac{1}{2} m \dot{x}^{2} \quad \text { and } \quad E_{\text {pot }}(x)
$$

- Set up the Lagrangian

$$
\mathcal{L}=\int_{0}^{T}\left(E_{\text {kin }}-E_{\mathrm{pot}}\right) d t
$$

- The equation of motion are given by the variation with respect to particle path

$$
m \ddot{x}=f
$$

$$
\delta \mathcal{L}=0
$$

- We have

$$
\begin{aligned}
\delta \mathcal{L} & =\int_{0}^{T} m x \cdot \delta \dot{x} d t-\int_{0}^{T} \nabla E_{\mathrm{pot}}(x) \cdot \delta x d t \\
& =\int_{0}^{T}\left(-m \ddot{x}+\nabla E_{\mathrm{pot}}(x)\right) \cdot \delta x d t
\end{aligned}
$$

Newton and Lagrange

- Introduce kinetic and potential energy

$$
E_{\text {kin }}=\frac{1}{2} m \dot{x}^{2} \quad \text { and } \quad E_{\mathrm{pot}}(x)
$$

- Set up the Lagrangian

$$
\mathcal{L}=\int_{0}^{T}\left(E_{\text {kin }}-E_{\mathrm{pot}}\right) d t
$$

- The equation of motion are given by the variation with respect to particle path

$$
m \ddot{x}=f
$$

$$
\delta \mathcal{L}=0
$$

- We have

$$
\begin{aligned}
\delta \mathcal{L} & =\int_{0}^{T} m x \cdot \delta \dot{x} d t-\int_{0}^{T} \nabla E_{\mathrm{pot}}(x) \cdot \delta x d t \\
& =\int_{0}^{T}\left(-m \ddot{x}+\nabla E_{\mathrm{pot}}(x)\right) \cdot \delta x d t
\end{aligned}
$$

- Hence,

$$
m \ddot{x}=\nabla E_{\text {kin }}
$$

The volumetric forces in the system

- The external forces are
- The pressure

The volumetric forces in the system

- The external forces are
- The pressure
- Viscous forces

$$
f_{\text {diss }}=\lambda(\nabla \cdot u) \boldsymbol{n}+\mu\left(\nabla u+\nabla(u)^{T}\right) \boldsymbol{n},
$$

The volumetric forces in the system

- The external forces are
- The pressure
- Viscous forces

$$
f_{\text {diss }}=\lambda(\nabla \cdot u) \boldsymbol{n}+\mu\left(\nabla u+\nabla(u)^{T}\right) \boldsymbol{n},
$$

Test surface S

The volumetric forces in the system

- The external forces are
- The pressure
- Viscous forces

$$
f_{\text {diss }}=\lambda(\nabla \cdot u) \boldsymbol{n}+\mu\left(\nabla u+\nabla(u)^{T}\right) \boldsymbol{n},
$$

Test surface S

Moving plates

The volumetric forces in the system

- The external forces are
- The pressure
- Viscous forces

$$
f_{\text {diss }}=\lambda(\nabla \cdot u) \boldsymbol{n}+\mu\left(\nabla u+\nabla(u)^{T}\right) \boldsymbol{n},
$$

Test surface S

Moving plates

The volumetric forces in the system

- The external forces are
- The pressure
- Viscous forces

$$
f_{\text {diss }}=\lambda(\nabla \cdot u) \boldsymbol{n}+\mu\left(\nabla u+\nabla(u)^{T}\right) \boldsymbol{n},
$$

Test surface S

Moving plates

$$
u_{1}(x, y)=v y, \quad u_{2}(x, y)=0
$$

$$
\nabla u=\left(\begin{array}{ll}
0 & v \\
0 & 0
\end{array}\right), \quad \nabla \cdot u=\operatorname{tr}(\nabla u), \quad \boldsymbol{n}=\binom{0}{-1}
$$

The volumetric forces in the system

- The external forces are
- The pressure
- Viscous forces

$$
f_{\text {diss }}=\lambda(\nabla \cdot u) \boldsymbol{n}+\mu\left(\nabla u+\nabla(u)^{T}\right) \boldsymbol{n}
$$

Test surface S

Moving plates

$u_{1}(x, y)=v y, \quad u_{2}(x, y)=0$
$\nabla u=\left(\begin{array}{ll}0 & v \\ 0 & 0\end{array}\right), \quad \nabla \cdot u=\operatorname{tr}(\nabla u), \quad \boldsymbol{n}=\binom{0}{-1}$

$$
f_{\mathrm{diss}}=\mu\left(\begin{array}{ll}
0 & v \\
v & 0
\end{array}\right)\binom{0}{-1}=-\mu v\binom{1}{0}
$$

Viscous forces

- If $u=$ constant, then $f_{\text {diss }}=0$

Viscous forces

- If $u=$ constant, then $f_{\text {diss }}=0$
- Let us consider the velocity field u of rotational motion, we can prove that

$$
u(t, x)=A(t) x
$$

where $A(t)$ is skew-symmetric, that is, $A^{T}=-A$.

Viscous forces

- If $u=$ constant, then $f_{\text {diss }}=0$
- Let us consider the velocity field u of rotational motion, we can prove that

$$
u(t, x)=A(t) x
$$

where $A(t)$ is skew-symmetric, that is, $A^{T}=-A$. Hence, $\nabla u=A$ and

$$
\begin{aligned}
f_{\mathrm{diss}} & =\lambda \operatorname{tr}(A) \boldsymbol{n}+\mu\left(A+A^{T}\right) \boldsymbol{n} \\
& =0
\end{aligned}
$$

The viscous force vanishes for such rigid body motion.

Viscous forces

- If $u=$ constant, then $f_{\text {diss }}=0$
- Let us consider the velocity field u of rotational motion, we can prove that

$$
u(t, x)=A(t) x
$$

where $A(t)$ is skew-symmetric, that is, $A^{T}=-A$. Hence,
$\nabla u=A$ and

$$
\begin{aligned}
f_{\text {diss }} & =\lambda \operatorname{tr}(A) \boldsymbol{n}+\mu\left(A+A^{T}\right) \boldsymbol{n} \\
& =0
\end{aligned}
$$

The viscous force vanishes for such rigid body motion.

- Viscous energy

$$
E_{\mathrm{diss}}=\int_{\Omega}\left(\frac{\lambda}{2} \operatorname{tr}(\varepsilon)^{2}+\mu\|\varepsilon\|^{2}\right) d x
$$

where ε is symmetric tensor

$$
\varepsilon=\frac{1}{2}\left(\nabla u+\nabla(u)^{T}\right)
$$

Conservation of momentum and angular

momentum

- Newton's third law

When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body

Conservation of momentum and angular

momentum

- Newton's third law

When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body

- It implies that the total force and the total torque is zero

$$
\sum_{i, j} f_{i, j}=0 \quad \text { and } \quad \sum_{i, j} r_{i} \times f_{i, j}=0
$$

Conservation of momentum and angular

momentum

- Newton's third law

When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body

- It implies that the total force and the total torque is zero

$$
\sum_{i, j} f_{i, j}=0 \quad \text { and } \quad \sum_{i, j} r_{i} \times f_{i, j}=0
$$

- For a closed system, we have the conservation of momentum and of angular momentum

$$
\frac{d}{d t} \sum_{i}\left(m_{i} v_{i}\right)=0 \quad \text { and } \quad \frac{d}{d t} \sum_{i} m_{i} r_{i} \times v_{i}=0
$$

Approximation of the viscous force

- Infinite channel in a stationary state:
$\xrightarrow{\bar{u}} \underset{\Delta \bar{p}}{\stackrel{\rightharpoonup}{\rightrightarrows}} \stackrel{\Omega}{\rightrightarrows}$

Approximation of the viscous force

- Infinite channel in a stationary state:

- Define average values over the cross-section,

$$
\bar{u}=\frac{1}{|\Omega|} \int_{\Omega} u d x \quad \text { and } \quad \bar{p}=\frac{1}{|\Omega|} \int_{\Omega} p d x
$$

Q: Express $f_{\text {diss }}$ as a function of \bar{u}. Show that $f_{\text {diss }}=-a \bar{u}$, for a constant a that depends only on the shape Ω. You have to compute the velocity profile.

Approximation of the viscous force

- Infinite channel in a stationary state:

- Define average values over the cross-section,

$$
\bar{u}=\frac{1}{|\Omega|} \int_{\Omega} u d x \quad \text { and } \quad \bar{p}=\frac{1}{|\Omega|} \int_{\Omega} p d x
$$

Q: Express $f_{\text {diss }}$ as a function of \bar{u}. Show that $f_{\text {diss }}=-a \bar{u}$, for a constant a that depends only on the shape Ω. You have to compute the velocity profile.

- Similar approach to obtain Darcy approximation $\bar{u}=-K \frac{\Delta \bar{p}}{\Delta x}$.

Approximation of the viscous force

- Infinite channel in a stationary state:

- Define average values over the cross-section,

$$
\bar{u}=\frac{1}{|\Omega|} \int_{\Omega} u d x \quad \text { and } \quad \bar{p}=\frac{1}{|\Omega|} \int_{\Omega} p d x
$$

Q: Express $f_{\text {diss }}$ as a function of \bar{u}. Show that $f_{\text {diss }}=-a \bar{u}$, for a constant a that depends only on the shape Ω. You have to compute the velocity profile.

- Similar approach to obtain Darcy approximation $\bar{u}=-K \frac{\Delta \bar{p}}{\Delta x}$.
- Q: Compute the coefficient a for Ω given by a cylinder, a square or an hexagon.

One dimensional approximation

Instead of considering

$$
\begin{aligned}
\rho_{t}+\nabla \cdot(\rho u) & =0 \\
(\rho u)_{t}+\nabla \cdot(\rho u \otimes u) & =-\nabla p-a u
\end{aligned}
$$

we consider the one dimensional approximation

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x} & =0 \\
(\rho u)_{t}+\left(\rho u^{2}\right)_{x} & =-\frac{\partial p}{\partial x}-a u
\end{aligned}
$$

Q: How are the one-dimensional equations obtained? What are the approximations that we are doing?

One dimensional approximation (2)

- We consider an ideal gas law, with constant temperature. Then p is proportional to ρ,

$$
p=b \rho
$$

Q: Setup the steady state equations. What are the boundary conditions?

One dimensional approximation (2)

- We consider an ideal gas law, with constant temperature. Then p is proportional to ρ,

$$
p=b \rho
$$

Q: Setup the steady state equations. What are the boundary conditions?

- Q: Solve numerically the equations.

One dimensional approximation (2)

- We consider an ideal gas law, with constant temperature. Then p is proportional to ρ,

$$
p=b \rho
$$

Q: Setup the steady state equations. What are the boundary conditions?

- Q: Solve numerically the equations.
- Q: Set up equations for the time-dependent perturbed solution from the steady-state.

$$
p=p_{0}+\varepsilon \hat{p} \quad \text { and } \quad u=u_{0}+\varepsilon \hat{u}
$$

One dimensional approximation (2)

- We consider an ideal gas law, with constant temperature. Then p is proportional to ρ,

$$
p=b \rho
$$

Q: Setup the steady state equations. What are the boundary conditions?

- Q: Solve numerically the equations.
- Q: Set up equations for the time-dependent perturbed solution from the steady-state.

$$
p=p_{0}+\varepsilon \hat{p} \quad \text { and } \quad u=u_{0}+\varepsilon \hat{u}
$$

- After that, we only consider steady-state.

mass loss from the walls

- We incorporate in the model mass loss along the walls

mass loss from the walls

- We incorporate in the model mass loss along the walls

- Q: How are the full 3D equations changed?

mass loss from the walls

- We incorporate in the model mass loss along the walls

- Q: How are the full 3D equations changed?
- Q: How are the $1 D$ equations changed?

mass loss from the walls

- We incorporate in the model mass loss along the walls

- Q: How are the full 3D equations changed?
- Q: How are the 1D equations changed?
- Q: Solve numerically the 1D equations in the stationary case.

Porous media

- Linear relation between velocity and pressure drop

$$
u=-\frac{K}{\mu} \frac{\Delta p}{\Delta x}
$$

Porous media

- Linear relation between velocity and pressure drop

$$
u=-\frac{K}{\mu} \frac{\Delta p}{\Delta x}
$$

- We approximate the flux as

$$
u=-\frac{K}{\mu} \nabla p
$$

The scalar (or matrix) K is called the permeability.

Porous media

- Linear relation between velocity and pressure drop

$$
u=-\frac{K}{\mu} \frac{\Delta p}{\Delta x}
$$

- We approximate the flux as

$$
u=-\frac{K}{\mu} \nabla p
$$

The scalar (or matrix) K is called the permeability.

- The Darcy relation replaces the momentum equation. Note that the kinetic energy is neglected in a porous media.

Porous media

- Linear relation between velocity and pressure drop

$$
u=-\frac{K}{\mu} \frac{\Delta p}{\Delta x}
$$

- We approximate the flux as

$$
u=-\frac{K}{\mu} \nabla p
$$

The scalar (or matrix) K is called the permeability.

- The Darcy relation replaces the momentum equation. Note that the kinetic energy is neglected in a porous media.
- Q: Derive the governing equation for a porous media.

Upscaling of the porous media layer

- We want to avoid solving the partial differential equations the porous media layer.

Upscaling of the porous media layer

- We want to avoid solving the partial differential equations the porous media layer.
- Let p_{i} and p_{e} be the internal and external pressure, and

$$
U=\int_{\Gamma} u \cdot \boldsymbol{n} d x
$$

Cylindrical channel

Square channel

Upscaling of the porous media layer

- We want to avoid solving the partial differential equations the porous media layer.
- Let p_{i} and p_{e} be the internal and external pressure, and

$$
U=\int_{\Gamma} u \cdot \boldsymbol{n} d x
$$

Cylindrical channel

Square channel

- Q: Find the relation between U and $p_{e}-p_{i}$ for the steady state. Compute κ for a cylinder and a square.

$$
U=\kappa\left(p_{e}-p_{i}\right)
$$

Coupling of the channel with a porous layer

- At the interface, we should have conservation of mass and force balance. Q: What are the interface condition?

Coupling of the channel with a porous layer

- At the interface, we should have conservation of mass and force balance. Q: What are the interface condition?

- We consider pressure continuity at the interface (consistent with previous approximation). \mathbf{Q} : Set up the one dimensional equations.

Coupling of the channel with a porous layer (2)

- In the stationary case, the equations take the form

$$
A(p, u)\binom{p_{x}}{u_{x}}=b(p, u)
$$

Coupling of the channel with a porous layer (2)

- In the stationary case, the equations take the form

$$
A(p, u)\binom{p_{x}}{u_{x}}=b(p, u)
$$

- This is a first order (non-linear) ordinary differential system.

Coupling of the channel with a porous layer (2)

- In the stationary case, the equations take the form

$$
A(p, u)\binom{p_{x}}{u_{x}}=b(p, u)
$$

- This is a first order (non-linear) ordinary differential system.
- Q: What kind of input/output do we want to consider?

Coupling of the channel with a porous layer (2)

- In the stationary case, the equations take the form

$$
A(p, u)\binom{p_{x}}{u_{x}}=b(p, u)
$$

- This is a first order (non-linear) ordinary differential system.
- Q: What kind of input/output do we want to consider?
- Q: Solve the equations numerically.

Coupling the inlet and outlet channel

- We can now couple inlet and outlet channels

Coupling the inlet and outlet channel

- We can now couple inlet and outlet channels
- We introduce the pressure q and velocity v in the outlet channel.

Coupling the inlet and outlet channel

- We can now couple inlet and outlet channels
- We introduce the pressure q and velocity v in the outlet channel.
$u_{\text {in }}, p_{\text {in }} \rightarrow \quad(u, p)$
- Q: Setup the equations for the one dimensional model in the stationary case.

$$
A(p, u, q, v)\left(\begin{array}{c}
p_{x} \\
u_{x} \\
q_{x} \\
v_{x}
\end{array}\right)=b(p, u, q, v)
$$

Coupling the inlet and outlet channel

- We can now couple inlet and outlet channels
- We introduce the pressure q and velocity v in the outlet channel.

- Q: Setup the equations for the one dimensional model in the stationary case.

$$
A(p, u, q, v)\left(\begin{array}{l}
p_{x} \\
u_{x} \\
q_{x} \\
v_{x}
\end{array}\right)=b(p, u, q, v)
$$

- Q: Solve those equations numerically.

Accumulation of particles

- We denote by c the concentration of soot particles $(c=$ mass(soot)/mass(gas))

Accumulation of particles

- We denote by c the concentration of soot particles $(c=$ mass(soot)/mass(gas))

- Q: What is the modeling equation that governs c, for the 3D model and the one-dimensional model.

Accumulation of particles

- We denote by c the concentration of soot particles $(c=$ mass(soot)/mass(gas))

- Q: What is the modeling equation that governs c, for the 3D model and the one-dimensional model.
- Q: Find a formula for the amount of accumulated particles as a function of t and x

Accumulation of particles

- We denote by c the concentration of soot particles $(c=$ mass(soot)/mass(gas))

- Q: What is the modeling equation that governs c, for the 3D model and the one-dimensional model.
- Q: Find a formula for the amount of accumulated particles as a function of t and x
- Q: Compute this value numerically (one-dimensional case).

Filter clogging

- The soot accumulates on the porous wall, reducing the efficiency of the filter.

Filter clogging

- The soot accumulates on the porous wall, reducing the efficiency of the filter.
- The layer of accumulated soot is porous. We assume that it has a given constant permeability K_{s}.
soot particle layer

Filter clogging

- The soot accumulates on the porous wall, reducing the efficiency of the filter.
- The layer of accumulated soot is porous. We assume that it has a given constant permeability K_{s}.
soot particle layer

- Q: Compute the new coefficient κ.

$$
U=\kappa\left(p_{e}-p_{i}\right)
$$

Filter clogging

- The soot accumulates on the porous wall, reducing the efficiency of the filter.
- The layer of accumulated soot is porous. We assume that it has a given constant permeability K_{s}.
soot particle layer

- Q: Compute the new coefficient κ.

$$
U=\kappa\left(p_{e}-p_{i}\right)
$$

- The coefficient κ depends on the amount of accumulated soot and the amount of accumulated soot depends on κ. Q: Set up the coupled equations.

Filter clogging - general cross-section

- For a general geometry of the cross-section, the particles do not accumulate uniformly at the interface

with

$$
\Gamma_{s}(t)=\{x(\tau, t) \mid \tau \in[0,1]\}
$$

Filter clogging - general cross-section

- For a general geometry of the cross-section, the particles do not accumulate uniformly at the interface

with

$$
\Gamma_{s}(t)=\{x(\tau, t) \mid \tau \in[0,1]\}
$$

- Q: Derive the equation for $x(\tau, t)$. Find an equation that guarantees the conservation of the mass of soot.

Filter clogging - general cross-section

- For a general geometry of the cross-section, the particles do not accumulate uniformly at the interface

with

$$
\Gamma_{s}(t)=\{x(\tau, t) \mid \tau \in[0,1]\}
$$

- Q: Derive the equation for $x(\tau, t)$. Find an equation that guarantees the conservation of the mass of soot.
- Q: Design and implement a scheme to solve the governing equations for this problem.

