

TMA4195 Mathematical Modelling Autumn 2017

Exercise set 2 Exercise session 2017-9-7

1 Let

(1) $u(x) = e^{-10x} + e^{-100x}$ for $x \in [0, 1]$.

Suggest (natural) scales for x and indicate where in [0, 1] their use is reasonable.

2 (Problem 7 p. 32 in Logan)

A rocket blasts off from the earth's surface. During the initial phase of flight, fuel is burned at the maximum possible rate α , and the exhaust gas is expelled downward with velocity β relative to the velocity of the rocket. The motion is governed by the following set of equations:

(2)
$$m'(t) = -\alpha, \quad m(0) = M,$$

(3)
$$v'(t) = \frac{\alpha\beta}{m(t)} - \frac{g}{\left(1 + \frac{x(t)}{R}\right)^2}, \quad v(0) = 0,$$

(4)
$$x'(t) = v(t), \quad x(0) = 0$$

where m(t) is the mass of the rocket, v(t) is the upward velocity, x(t) is the height above the earth's surface, M is the initial mass, g is the gravitational constant, and R is the radius of the earth. Reformulate the problem in terms of dimensionless variables using appropriate scales for m, x, v, t.

(*Hint*: Scale m and x by obvious choices; then choose the time scale and velocity scale to ensure that the terms in the v equation are of the same order as well as the terms in the x equation. Assume that the acceleration is due primarily to fuel burning and that the gravitational force is small in comparison.)

3 Let the line of real numbers represent an infinitely long river. Suppose sewage is poured out uniformly over the distance (0, L) at the instant $t^* = 0$. If we let $u^*(x^*, t^*)$ represent the concentration of sewage at position x^* and time t^* , we can model the transport of the pollution by the PDE:

$$u_{t^*}^* + c u_{x^*}^* = \kappa u_{x^*x^*}^*, \qquad \qquad u^*(x^*, 0) = \begin{cases} U, & \text{if } 0 < x^* < L, \\ 0, & \text{else,} \end{cases}$$

for two non-zero constants c and κ . It is known (by the maximum principle) that $0 \le u^* \le U$ for $t^* > 0$. A natural scaling in this problem is $x^* = Lx$.

For the two following cases, determine the scales for u^* and t^* and find the scaled equation:

- (a) $|\kappa| \ll |cL|$.
- (b) $|\kappa| \gg |cL|$.
- 4 (Problem 4.2.5 p. 55 in Krogstad)

Case B in the discussion in Krogstad of the falling sphere in a fluid (section 2.3.2) led to the equation

$$2\ddot{x}+\epsilon\dot{x}=1,\qquad x(0)=0,\qquad \dot{x}(0)=0,\qquad 0<\epsilon\ll 1.$$

This equation has the exact solution

$$x_{sol}(t) = \frac{2}{\epsilon^2} \left(e^{-\frac{1}{2}\epsilon t} - 1 \right) + \frac{t}{\epsilon}.$$

(a) Determine x_0, x_1 and x_2 in the regular perturbation expansion

$$x(t) = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + \cdots,$$

and show that it agrees with the start of the power series development in ϵ of the exact solution.

(b) An approximate solution $x_a(t, \epsilon)$ is a uniform approximation to the exact solution, x_{sol} , on the interval [0, 1] if

$$\lim_{\epsilon \to 0} \left(\max_{t \in [0,1]} |x_a(t) - x_{sol}(t)| \right) = 0.$$

Does this apply to $x_a(t,\epsilon) = x_0(t) + \epsilon x_1(t)$? What if we replace [0,1] with $[0,\infty)$?

5 (Problem 4.2.7 p. 54 in Krogstad)

This problem is somewhat similar to the sphere falling in a fluid (the scaling model problem without gravity), but in this case the friction is nonlinear. The equation reads

(5)
$$m\frac{dv^*}{dt^*} = -av^* + bv^{*2},$$

and

(6) $v^*(0) = V_0.$

We are told that a, b > 0, and also that $bV_0 \ll a$.

(a) First find the (obvious) scale for v^* and then the scale for time, T, from the simplified equation $m\frac{dv^*}{dt^*} = -av^*$ and the "rule of thumb"

$$T = \frac{\max |v^*|}{\max |dv^*/dt^*|}.$$

Show that this scaling leads to the equation

(7)
$$\frac{dv}{dt} = -v + \varepsilon v^2, \ v(0) = 1, \ \varepsilon \ll 1.$$

(b) Determine v_0 and v_1 of the series expansion $v(t) = v_0(t) + \varepsilon v_1(t) + \cdots$. Is this result reasonable for all t > 0 when the general solution of $\dot{y} = -y + \varepsilon y^2 = 0$ is

$$y\left(t\right) = \frac{e^{-t}}{C + \varepsilon e^{-t}},$$

and C is a constant?